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About the research 
Getting tough on missing data: a boot camp for social 
science researchers 

Sinan Gemici, Alice Bednarz & Patrick Lim, NCVER 

Research in the social sciences is routinely affected by missing or incomplete information. 

Ignoring missing data may yield research findings that are either ‘slightly off’ or ‘plain wrong’. 

However, there is often confusion over how best to handle missing data. 

In this paper, the authors repackage the highly technical missing data literature into a more 

accessible format. They illustrate why and how simple approaches to handling missing data 

fail. Here, simple approaches are those that delete records with missing data or which 

replace missing observations with crude estimates of their hypothesised ‘true’ value. They 

then discuss several common methods for addressing missing data and conduct a simulation 

study with real-life data to assess the performance of these methods. They conclude with a 

step-by-step guide on how to implement multiple imputation as one of two current ‘gold 

standard’ missing data methods. 

The key message of this paper is that modern software packages make it relatively easy to 

implement methods that handle missing values properly. 

 

Tom Karmel 

Managing Director, NCVER 
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Introduction 
Research in the social sciences is routinely affected by missing or incomplete information. Given that 

this is the norm rather than the exception, why are we so annoyed by missing data? Is it because 

missing data stand between us and the research questions we want to answer, or because missing 

information reduces the confidence we have in our findings? Or is it because we are simply unsure 

about how to handle missing data appropriately? Whatever the reason, as producers of applied social 

science research, we perceive missing data to be a nuisance that greatly complicates our work. 

Many situations can cause information to be missing, including an undue response burden from lengthy 

questionnaires, erroneous data entry, or a refusal to answer questions that are considered intrusive. 

Missing information is problematic because most statistical procedures used in the social sciences 

require complete data. Consequently, ignoring incomplete information may yield research findings 

that are either ‘slightly off’ or ‘plain wrong’. 

Much has been written about the pitfalls associated with missing data, as well as the different 

methods available to address them. So why are we writing this paper? We are motivated by the fact 

that much contemporary social science research continues to ignore missing data problems despite 

the widespread availability of methods that adequately address the issue. One likely reason for 

disregarding these methods is that most existing literature on missing data is highly technical and 

presumes extensive statistical and mathematical expertise on the part of the reader. Not all social 

scientists have undergone sufficient training in mathematical statistics to engage with this literature. 

Many applied researchers also have a limited desire to grapple with the theoretical underpinnings of 

missing data and are much more interested in practical guidance on handling concrete missing data 

problems. Therefore, our objective is to repackage the highly technical missing data literature into a 

more accessible format. We do so specifically with those researchers in mind who analyse large-scale 

surveys or administrative data collections. 

We commence this paper with a brief overview of the mechanisms that drive missing data and the 

patterns in which they occur. We then discuss several common methods for addressing missing data 

problems. We conclude with a simulation study in which we use data from the Longitudinal Surveys of 

Australian Youth (LSAY) and the National Vocational Education and Training Provider Collection to 

assess the performance of selected missing data methods. Practical guidelines for tackling concrete 

missing data problems are provided in the appendix. 

We find that addressing missing data with basic methods can severely impact on research results. 

While using more principled methods requires additional time and effort, we argue that not doing so 

can mean missing the mark when generating research findings. Our paper takes researchers on a ‘boot 

camp’, which will hopefully help them to get tough on missing data problems in their own work. 
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Missing data ‘behind the scenes’ 
Tackling a concrete missing data problem requires that we understand why and how information is 

missing. This understanding is key to identifying the mechanism that drives a missing data problem, 

which has direct implications for the particular method we may choose to address it. Here, we 

provide a concise, non-technical overview of these ‘behind the scenes’ aspects of missing data. 

Comprehensive technical overviews of missing data theory are available in the academic literature 

(for example, Little & Rubin 2002; Schafer 1997). 

The ‘why’ of missing data 

Data can be missing for numerous reasons. Rather than list all possible causes and scenarios, we focus 

on those that commonly affect large-scale observational data from surveys or administrative 

collections in the social sciences. 

Understanding why data are missing allows us to determine the type of non-response we are dealing 

with. We generally differentiate between attrition, unit non-response, item non-response, and wave 

non-response: 

 Attrition occurs in longitudinal surveys and means that respondents who participate in the initial 

survey wave drop out at some future wave. Dropout may occur for logistical reasons or because an 

eligible respondent loses interest in the survey. Attrition implies that the respondent does not 

rejoin the survey after dropping out. 

 Wave non-response also occurs in longitudinal surveys where participants may be missing for one 

or more survey waves. Wave non-response is different from attrition because the former implies 

that respondents rejoin the survey after missing one or more waves. 

 Unit non-response means that we have no data at all for an eligible respondent. This occurs if an 

eligible respondent refuses to participate in a study or survey, or if for some reason a respondent’s 

record is lost. 

 Item non-response refers to situations in which a respondent answers some items but fails to 

answer others. Item non-response frequently occurs with questions that the respondent perceives 

as intrusive (for example, questions about income, drug use, or sexual practices). It also occurs as 

a consequence of survey fatigue where lengthy and complicated questionnaires demotivate 

respondents. Missingness from undue response burden is exacerbated if respondents have limited 

interest in the survey topic or consider it irrelevant to their personal circumstances. 

Determining the type of non-response is important because different scenarios require different 

missing data methods. We emphasise that the methods discussed in this paper focus on missing data 

from item non-response. Missing data for other non-response types are typically addressed using 

weighting methods that are illustrated elsewhere (see Lim 2011 for weighting in the Longitudinal 

Surveys of Australian Youth; Piesse & Kalton 2009 for wave non-response weighting). 
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a. Univariate b. Monotone c. Arbitrary
Var 1 Var 2 Var 3 Var 4 Var 5 Wave 1 Wave 2 Wave 3 Wave 4 Wave 5 Var 1 Var 2 Var 3 Var 4 Var 5

The ‘how’ of missing data 

When thinking about how data are missing we refer to missing data patterns. Patterns reflect the way 

in which missing values structurally appear in our dataset. We generally differentiate between 

univariate, monotone, and arbitrary patterns, although variations of these fundamental patterns exist. 

A univariate pattern occurs when a specific variable contains missing values, while all other variables 

are fully observed (figure 1a). This can happen when, for example, respondents perceive a specific 

questionnaire item as particularly sensitive. Monotone missingness is typical of attrition in 

longitudinal surveys when individuals decide to drop out before all survey waves have been 

completed. Monotone missingness yields a staircase-like pattern with steadily increasing amounts of 

missing values for each data collection wave (figure 1b). Finally, patterns are arbitrary when the 

missing values make up no systematic, discernable structure within a dataset (figure 1c). This can 

occur when missing values are distributed randomly throughout the dataset as a result of item non-

response or errors in data entry. 

Figure 1 Graphical representation of missing data patterns 

 

Note: Missing values are represented by a blank rectangle; complete values are represented by a coloured rectangle. 

Alternatively, missing data patterns can be depicted in tabular form (see table 1). 

Table 1 Tabular representation of missing data patterns 

Group Freq Var1 Var2 Var3 Var4 Missing Vars 

1 2475 X X X X 0 

2 482 X X X . 1 

3 319 . X X X 1 

4 344 X X . X 1 

5 308 X . X X 1 

6 88 . X X . 2 

7 161 X X . . 2 

8 92 . X . X 2 

9 75 X . X . 2 

10 145 . . X X 2 

11 141 X . . X 2 

12 53 . X . . 3 

13 66 . . X . 3 

14 80 X . . . 3 

15 87 . . . X 3 

16 84 . . . . 4 

  934 986 1042 1089 4051 

Note: Missing values are depicted as ‘.’; observed values are depicted as ‘X’. 



NCVER 11 

In table 1, patterns of missingness are categorised by groups. The first group consists of 2475 records 

that are complete on all four variables in the dataset. In the second group, 482 records contain 

missing values on the fourth variable (that is, univariate missingness). In the 16th group, 84 records 

have missing values on all four variables. The bottom row shows the total number of missing values 

per variable. The total number of missing values throughout the entire dataset amounts to 4051, and 

most of them (1089) occur on the fourth variable. The final column summarises the number of 

variables with missing values per group. 

The reason we are interested in the ‘how’ of missing values is that it can be related to the ‘why’. This 

relationship is more obvious in fairly simple scenarios, as with the relationship between attrition and 

monotone patterns, or between erroneous data entry and arbitrary patterns. In many real-life 

situations, however, researchers may find the connections between causes and patterns to be 

obscured by a mixture of different missing data patterns within the same dataset. This is particularly 

true when working with large-scale observational or administrative data collections that feature 

numerous survey waves and/or variables. 

Missing data mechanisms 

Clarity about why and how values are missing is important in order to understand better the 

mechanism that drives a concrete missing data problem. Likewise, understanding this mechanism is 

crucial for selecting an appropriate missing data method. Missing data mechanisms capture the 

probabilistic relationships between missing and observed values in a dataset. The following sections 

further clarify this somewhat complex concept. 

We distinguish between three mechanisms that can underlie a missing data problem, including missing 

completely at random (MCAR), missing at random (MAR), and missing not at random (MNAR). 

Introduced by Rubin (1976), this standard terminology is not directly intuitive to many researchers 

who begin to grapple with concrete missing data problems. However, gaining familiarity with these 

terms and concepts is crucial because they are used constantly in all discussions relating to missing 

data and these are referenced heavily throughout the remainder of this paper. Given their 

fundamental importance in understanding missing data, we attempt to describe these mechanisms 

conceptually rather than statistically. Interested readers are referred to Little and Rubin (2002) for a 

comprehensive technical treatise of the topic. 

Missing completely at random (MCAR) 

When data are missing completely at random, the missing observations simply represent a random 

sample from within all observations in the dataset. As mentioned earlier, random error in data entry 

represents one of many possible scenarios of completely random missingness. Since no structural 

association exists between missing and observed data, missing values do not alter the original 

distributional relationships between variables. 

Missing completely at random is considered ‘ignorable’ because it is not necessary to model the 

missing data mechanism separately from modeling the parameter estimates we are interested in. In 

terms of missing data bias, no particular method is required to address the problem. However, 

discarding cases with missing data reduces sample size and statistical power. We revisit this point in 

more detail in our discussion of missing data methods. 

We strongly caution readers that the assumption of data missing completely at random is unrealistic 

in most social science collections. This is particularly true for large-scale observational surveys that 
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contain numerous interrelated variables. Researchers can test whether data are missing completely at 

random by conducting Little’s (1988) MCAR test. This test compares sub-groups with missing and 

observed data that share the same missing data pattern. The null hypothesis of data missing 

completely at random is rejected if the missing values do not represent a true random sample of the 

observed data. Little’s MCAR test is available in several standard statistical software packages and 

should be conducted as part of exploratory data analysis. (Additional information on Little’s MCAR 

test is provided in appendix A: Practical guidelines for applied researchers.) 

Missing at random (MAR) 

While understanding the missing completely at random mechanism is important, very few social 

science datasets contain observations that are actually missing completely at random. A weaker 

condition, labelled missing at random, is therefore more realistic in practice. When data are missing 

at random, missing observations in a particular variable are related to one or more of the other 

variables in the dataset, given that these other variables are fully observed. However, missing 

observations must not depend on the variable in which they occur. (This scenario is called missing not 

at random and is described in the following sub-section.) 

To illustrate the missing at random mechanism, we consider a cohort of school completers who are 

asked to report their tertiary entrance rank (TER) scores. We further assume that students who have 

been in Australia for less than five years, as well as students from lower socioeconomic backgrounds, 

are less likely to report their TER scores. As long as the missingness in TER scores is conditional on a 

student’s length of in-country residence and socioeconomic profile, but not on the TER score itself, 

the assumption of the data being missing at random is satisfied. 

The above example clarifies that, despite the term ‘missing at random’, missing data under this 

mechanism do not constitute an independent random subset of the observed data. However, missing 

at random is still considered ‘ignorable’ because there is no need to model the missing data 

mechanism separately from estimating the parameter estimates we are interested in (Allison 2002). 

This modelling of the missing data mechanism is required only when data are missing not at random, 

as outlined in the following sub-section. 

Missing not at random (MNAR) 

Missing not at random refers to situations in which, even after controlling for other variables in the 

dataset, the missingness on a variable is still related to the missing values in that same variable. To 

clarify, let us consider the same TER score scenario as above. Under the assumption that data are 

missing not at random, the probability of missing TER scores may or may not depend on the 

respondents’ length of in-country residence and socioeconomic background, as well as any other 

variable in the dataset. What is important is that the probability would also depend on the value of 

the TER score itself. Supposing that respondents with lower TER scores are less likely to report them, 

the value of the TER score thus influences the probability of its missingness. 

Missing not at random is considered a ‘non-ignorable’ mechanism because the missingness depends, 

at least partially, on the missing data themselves. Since we cannot verify the value of a missing 

observation, we have to model the missing data mechanism separately from modelling the parameter 

estimates we are interested in. Allison (2002) cautions that ‘for effective estimation with non-

ignorable missing data, very good prior knowledge about the nature of the missing data process 

usually is needed, because the data contain no information about what models would be appropriate 



NCVER 13 

and the results typically will be very sensitive to the choice of model’ (p. 5). Overall, non-ignorable 

missingness greatly complicates the handling of incomplete data. 

How can we know whether data are missing at random (ignorable) or missing not at random (non-

ignorable)? The simple answer is that we cannot. Little’s MCAR test only determines whether data are 

missing completely at random. Once the null hypothesis of completely random missingness is 

rejected, no further statistical tests are available to determine the remaining mechanisms. While 

Bayesian modelling techniques are available to address non-ignorable missingess (see Mason et al. 

2010), we caution readers that understanding and implementing these techniques requires 

considerable technical expertise. A more practical option for less experienced researchers can 

therefore be to assume that data are missing at random for practical purposes and to be explicit 

about the potential bias in research outcomes. 

Key points to remember 

The take-home message from our ‘behind the scenes’ discussion is that we need to familiarise 

ourselves with the concrete missing data scenario we are faced with. This entails a consideration of 

reasons, patterns, and mechanisms. The latter is critical, but can be particularly challenging. 

It often helps to think about missing data mechanisms in terms of their biasing effects on research 

results. The missing completely at random mechanism has no systematic impact on bias and is the 

easiest scenario to address. It is also the least realistic one, especially when working with large-scale 

social science data. A missing at random mechanism will likely bias our results unless we use 

adequate methods to address our missing data problem. A missing not at random mechanism can have 

a strong impact on bias unless it is addressed using very specific models. However, implementing and 

assessing these models is very costly in terms of the time and expertise required. 

To help retain key terminology for missing data mechanisms, we summarise standard acronyms in 

table 2. 

Table 2 Summary of standard acronyms for missing data mechanisms 

Mechanism Meaning Description 

MCAR Missing completely at random Missingness is unconditional on any specific variable in the 
dataset 

MAR Missing at random Missingness is conditional on observed variables, but not on 
the variable on which it occurs 

MNAR Missing not at random Missingness is conditional on the variable on which it occurs, 
as well as observed variables 
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Missing data methods 
Numerous methods have been developed over time to address missing data problems. Methods range 

from basic case deletion to more complex imputation procedures. Rather than detail each available 

method, we discuss a select few that are commonly used in applied social science research. 

Case deletion methods 

Case deletion methods, such as listwise or pairwise deletion, are popular because they allow 

researchers to dispense with missing data problems quickly and easily. However, the limitations 

inherent in these basic methods far outweigh their benefits in many research scenarios, and especially 

those that involve the analysis of large-scale data. 

Listwise deletion 

Listwise deletion (also referred to as complete case analysis) is the most prominent case deletion 

method in social science research. Any record with a missing value on one or more variables is 

discarded from statistical analysis. This is done either by physically or logically removing the record 

from the dataset. The latter is the default setting for handling missing values in standard statistical 

software packages because commonly used statistical procedures have been developed for 

complete data. 

Listwise deletion has two major limitations. First, it requires data to be missing completely at random. 

This assumption may be viable when technical issues or errors in data entry produce missing values in 

administrative data collections. However, missing values in large-scale surveys are most often related 

to participant characteristics, such as socioeconomic status, academic achievement, disability status, 

immigrant status, and many others. As discussed earlier, the practical implication of missing at random 

or missing not at random mechanisms is that respondents with observed data are systematically 

different from those with missing data. Listwise deletion can thus bias results from data analysis 

because the remaining sample is no longer representative of the original population of interest.1

A second important disadvantage is that listwise deletion reduces available sample size. The smaller 

the remaining complete-data sample, the greater the loss of statistical power, which curtails our 

ability to detect a significant effect through statistical testing. Listwise deletion therefore increases 

our risk of failing to detect potentially important relationships between predictor variables and 

outcomes of interest. When used with large-scale social science datasets, listwise deletion often 

results in particularly dramatic case loss due to the large number of variables on which missing values 

can occur. 

 

Pairwise deletion 

Pairwise deletion (also referred to as complete variables analysis) is a variable-by-variable method 

where only those cases that exhibit missing values on a particular bivariate pair are discarded. This 

approach can be used with common statistical procedures, such as correlation analysis, ANOVA, and 

regression. Pairwise deletion shares the disadvantages associated with listwise deletion, such as the 

                                                   
1 Listwise deletion can yield unbiased parameter estimates in linear regression models even when data are missing at 

random or missing not at random if the missing values depend on a single predictor rather than the outcome variable 
(see Little 1992 for more information). 
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need for data to be missing completely at random and loss of statistical power (albeit to a lesser 

extent). Moreover, pairwise deletion produces biased standard errors (that is, sampling fluctuation 

around an estimate) due to the fact that sample sizes vary according to which bivariate pair is 

considered. (See Enders 2010 for a technical discussion of standard error bias in pairwise deletion.) 

Single imputation methods 

Whereas case deletion methods simply discard missing data, single imputation methods replace any 

missing data point with a simple fixed estimate of the hypothesised ‘true’ value. Numerous single 

imputation methods have been developed that vary in complexity. Here, we discuss two of the less 

complex single imputation methods routinely used in the social sciences. 

Constant replacement 

Constant replacement methods replace a missing data point with a simple fixed estimate of the 

unobserved value. This estimate is usually the mean or mode of the variable in which the missing data 

point occurs. Besides being easy to implement, the key advantage of constant replacement over case 

deletion lies in the preservation of sample size and, thus, statistical power. However, replacing 

missing values with a constant can severely reduce the variability in the data. Reduced variability 

leads to biased estimates of variances and covariances unless data are missing completely at random. 

Regression imputation 

Regression imputation replaces missing data with the predicted values from a linear regression model. 

This method requires at least a moderate degree of covariance between variables with missing data 

and all other variables within the data matrix. Since imputed values fall directly on the regression 

plane, the residual variability in the data is diminished. To offset this effect, a random error term can 

be added to the imputation model to introduce additional variance. This procedure is commonly 

referred to as stochastic regression imputation. Although easy to implement, regression imputation is 

known to overestimate correlations and R2 values, and underestimate standard errors (Enders 2010). 

Maximum likelihood estimation 

Maximum likelihood estimation is a method for estimating unknown population parameters, such as 

the means, variances, and covariances. Given a complete sample from a population of interest, the 

procedure uses a likelihood function to estimate those population parameters that are most likely to 

have produced that particular sample (Enders 2010). The likelihood function is different for each 

sample from the population. 

When our sample contains missing values, maximum likelihood estimation is more difficult, because in 

addition to the unknown parameters, we now have unknown data to deal with. The two methods used 

to perform maximum likelihood estimation on incomplete data include expectation-maximisation and 

direct maximum likelihood. 

Expectation-maximisation 

The idea behind the expectation-maximisation algorithm is to first ‘fill in’ the missing values and then 

find the maximum likelihood estimates for the complete-data problem. This is much easier than trying 

to directly generate maximum likelihood estimates for the incomplete-data problem (Schafer & 

Graham 2002). The expectation-maximisation algorithm iterates between an ‘expectation’ and a 
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‘maximisation’ step. In the expectation step, missing values are ‘filled in’ with regression and 

covariance estimates of the observed data, whereas the subsequent maximisation step maximises the 

likelihood function. Maximising a likelihood function means finding those estimates of the population 

parameters that are most likely (that is, have the ‘maximum likelihood’) to match/produce the 

sample of data we are working with. The algorithm iterates between these two steps using 

continuously updated estimates, meaning that the maximisation step recalculates parameters based 

on the re-estimated filled-in missing data parameters from the expectation step until the parameter 

estimates from both steps converge (that is, they hardly change from one iteration to the next). 

While expectation-maximisation can be used for ordinary linear regression, factor analysis, and 

structural equation modelling, it underestimates standard errors because it fails to account for the 

uncertainty inherent in the missing data which arises from the fact that we have to estimate the 

unobserved ‘true’ values. Moreover, expectation-maximisation is not practical for estimating logistic 

regression coefficients, as no suitable commercial software is currently available (see Millsap & 

Maydeu-Olivares 2009 for further details). 

A final word of caution on the use of expectation-maximisation is in order. It is important to recognise 

that the expectation-maximisation algorithm was designed for the purpose of estimating population 

parameters, not for imputing plausible values that can be ‘plugged in’ to replace missing data points 

and provide researchers with a complete dataset on which subsequent analyses can be carried out 

directly. When used in this manner, expectation-maximisation effectively results in regression 

imputation. Researchers should refrain from using expectation-maximisation to create complete 

datasets as a basis for further data analysis because doing so would yield biased research results 

(Enders 2010). 

Direct maximum likelihood 

Direct maximum likelihood is an alternative to expectation-maximisation. Remember that with 

expectation-maximisation we first ‘fill in’ the missing values and then find the maximum likelihood 

estimates for the complete-data problem. With direct maximum likelihood, we maximise the likelihood 

function directly based on parameters from a specified distribution. Although applied social science 

researchers routinely specify a multivariate normal distribution, other distributions are also possible. 

A notable advantage of direct maximum likelihood is its ability to produce unbiased parameter 

estimates and standard errors under the multivariate normal model (Allison 2002). Parameter 

estimates are robust to deviations from normality, although standard errors are underestimated. 

However, both direct maximum likelihood and expectation-maximisation procedures are sensitive to 

misspecifications of the imputation model. Direct maximum likelihood can be used in linear models 

(including structural equation modelling, hierarchical linear modelling), yet specialised software or 

the adaptation of standard software is required to carry out direct maximum likelihood estimation for 

non-linear analyses (Millsap & Maydeu-Olivares 2009). While detailing the mechanics of direct 

maximum likelihood is beyond the scope of this paper, we refer the interested reader to Enders 

(2010) for an excellent and accessible discussion. 
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Multiple imputation 

Multiple imputation is a modern, general-purpose missing data method that can be applied to any 

type of data and used with any kind of statistical analysis. The basic process of multiple imputation is 

straightforward and consists of the following broad steps: 

 First, we specify an imputation model to replace missing values with plausible data points. These 

plausible data points are drawn at random from an assumed underlying distribution of the missing 

data that is based on the distribution of the observed data. (Usually we assume a multivariate 

normal distribution, although other distributions are possible.) This process turns the original 

incomplete dataset into a complete one. 

 Adding random variation to the imputation model, we then repeat this process several times to 

obtain a specified number of complete datasets. Due to the added random variation, each dataset 

will replace the missing values with a slightly different set of plausible data points. 

 Next, we analyse each of the now complete datasets using any statistical analysis method we 

deem appropriate to answer our substantive research question. This process provides us with a set 

of results (parameter estimates and standard errors) for each imputed dataset. Given that the 

imputed values for each dataset are slightly different, the parameter estimates and standard 

errors should also differ. 

 Finally, we use simple arithmetic procedures that are built into standard statistical software 

packages to pool the different parameter estimates and standard errors into a single set of results. 

This procedure ensures that the uncertainty inherent in the missing data that arises from the fact 

that we have to estimate the unobserved true values is accounted for by upward-adjusting the 

pooled standard error estimate. 

The generation of several different values for each missing data point is a key characteristic that 

distinguishes multiple imputation from all other missing data methods. A simple diagram of multiple 

imputation is given in figure 2. Here, the original data has three missing data points, represented by 

blank squares. The multiple imputation process creates three imputed datasets in which the missing 

data points are ‘filled in’ with slightly different plausible values each time. This is done to reflect the 

uncertainty inherent in the missing data, which arises from the fact that we have to estimate the 

unobserved ‘true’ values. Each imputed dataset is analysed separately before pooling the individual 

parameter estimates and standard errors into a single set of results. (This is done automatically by 

statistical software packages that incorporate multiple imputation functionality.) 
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Figure 2 Simple diagram of the multiple imputation process 

 

 

 

 

 

 

 

To further clarify the mechanics of generating multiple imputed datasets, the following provides a 

brief conceptual overview of how the process is implemented in the statistical software package SAS. 

We provide more details and an example of the imputation process in appendix B: A worked example 

of multiple imputation. 

How multiple imputation works in SAS 

The multiple imputation framework offers several methods to create plausible data points for missing 

values. Which method to choose depends on the pattern of the missing data. The three multiple 

imputation methods available in SAS include: 

1 regression method for monotone missing data 

2 propensity score method for monotone missing data 

3 data augmentation method for arbitrary missing data 

(also known as the Markov Chain Monte Carlo method). 

Given that our study addresses arbitrary missingness, we focus on the data augmentation algorithm 

(Schafer 1997), which is the default option in SAS.2 The data augmentation method consists of an 

iterative two-step algorithm. The first step is called the imputation step, and the second the 

posterior3

The imputation step 

 step. 

The imputation step uses stochastic regression imputation (regression imputation with a random error 

term) to create plausible data points for replacing the missing values. This means that missing values 

are predicted using regression equations, but each predicted value is then augmented with a normally 

distributed random error term. The reason for adding the error term is to restore lost variability to 

                                                   
2 The software package R uses a different method for multiple imputation called Multiple Imputation by Chained 

Equations. Readers are referred to Azur, Stuart and Frangakis (2011) for a description of this alternative method. 
3 The term posterior is a reference to the posterior distribution used in Bayesian statistics. A posterior distribution is 

specified to describe the relative probability of different parameter values. It is the distribution from which the 
plausible data points are drawn. An excellent description of Bayesian statistics in the context of multiple imputation is 
available by Enders (2010). 
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the data and avoid the biases inherent in standard regression imputation (that is, overestimated 

correlations and R2 values; underestimated standard errors). Conceptually, we can say that the 

imputation step simulates a random draw from a set of plausible data points to replace the missing 

values, conditional on the observed values. 

The posterior step 
The posterior step takes the ‘filled in’ values from the previous imputation step and calculates the 

mean vector and covariance matrix of the now complete dataset. It then randomly perturbs the 

values for the mean vector and covariance matrix and passes them on to the next imputation step. 

This next imputation step uses these perturbed values to generate a new set of regression equations, 

which in turn leads to different ‘filled in’ plausible data points and, therefore, to a new complete 

dataset in which the replacement values are slightly different. This process is repeated multiple 

times, depending on the number of requested imputations. (For additional details on the posterior 

step, along with a step-by-step example, see appendix B: A worked example of multiple imputation.) 

Pooling the results 
We have already mentioned that once the desired number of imputed datasets has been created, we 

analyse each dataset individually with whichever statistical method we prefer to answer our 

substantive research question. In a final step, we now pool (that is, combine) parameter estimates 

and standard errors obtained from analysing each respective imputed dataset into a single set of 

results. Parameter estimates are pooled in one simple step by averaging the results from all 

separately analysed datasets. The pooling of standard errors consists of (1) calculating the within-

imputation variance by averaging standard errors over all imputed datasets, (2) calculating the 

between-imputation variance of the parameter estimates over all imputed datasets, and (3) taking 

the square root of the total variance of the parameter estimate. For completeness, we summarise the 

pooling process in arithmetic terms in table 3. However, note that statistical software packages carry 

out this process automatically for all standard analysis methods. 

Table 3 Pooling procedure for multiple imputation parameter estimates and standard errors 

Step Formula  
   

1. Pooled parameter estimate  
where m is the number of imputations and  
is the parameter estimate from the i-th 
imputed dataset 

   

2. Pooled standard error   
   

a. Within-imputation variance  
where  is the variance estimate from the i-
th imputed dataset, and m is the number of 
imputations 

   

b. Between-imputation variance   

   

c. Total imputation variance   

   

d. MI standard error S.E. =   
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Advantages of multiple imputation 

Multiple imputation has become tremendously popular among researchers, particularly in the fields of 

medicine and bio-statistics. This popularity is based on a number of key advantages multiple 

imputation can offer over other missing data methods. 

Suitable when data are missing at random 
One important shortcoming of listwise deletion, mean substitution, and other basic approaches is that 

these methods produce unbiased parameter estimates only when data are missing completely at 

random. Similar to maximum likelihood-based methods, multiple imputation yields unbiased 

parameter estimates under the much more realistic missing at random mechanism. 

In addition to producing unbiased parameter estimates when data are missing at random, multiple 

imputation yields correct standard errors that incorporate the uncertainty inherent in the missing 

data that arises from the fact that we have to estimate the unobserved true values. This added 

uncertainty is reflected in larger standard errors for each parameter estimate. Case deletion and 

single imputation methods fail to account for this additional uncertainty around parameter estimates. 

Given constant sample size, methods that ignore the uncertainty in the missing data will 

underestimate standard errors and p-values and increase the Type I error risk (Schafer & Olsen 1998). 

Appropriate for mixed-variable datasets 
Large-scale datasets in the social sciences usually contain numerous binary and categorical variables. 

However, single imputation methods have been developed for continuous multivariate-normal data 

and are inefficient when used to address binary and categorical missing values. While existing 

maximum-likelihood methods have been adapted for use with categorical missing data (see Lipsitz & 

Ibrahim 1996), these adaptations require a high level of technical expertise and are difficult to 

implement in practice. A major advantage of multiple imputation in the context of social science 

research with large-scale datasets is that researchers can use a single, straightforward process to 

impute variables with continuous as well as non-continuous data. 

Multiple imputation offers maximum flexibility 
Maximum likelihood methods integrate the imputation and analysis of data into one overall process. 

Since these methods work primarily with linear models, researchers are limited to certain statistical 

models when trying to answer their substantive research question. Multiple imputation completely 

separates the imputation from the data analysis process, thereby giving researchers complete 

flexibility over the post-imputation statistical models they wish to use. 

How well do different methods perform? 

This section has reviewed a number of missing data methods that are commonly used in the social 

sciences. So how well do different methods cope with missing data in real-world social science 

datasets? We answer this question in the following section using data from a longitudinal survey and 

an administrative collection. 
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Performance test 
Overview 

The relative performance of different missing data methods can be evaluated in terms of their ability 

to yield analysis results (that is, parameter estimates and their associated standard errors) from an 

incomplete dataset that closely resemble the results that would have been obtained had the dataset 

been complete. Based on this idea, we followed a five-step process to ascertain how well select 

missing data methods perform under different mechanisms and varying levels of missingness. We 

began by choosing a complete sample of data from two social science collections. In a second step, 

we deleted values from each of the two samples in a controlled manner so as to create a series of 

new samples, each featuring a predetermined level of missingness and operating under a specified 

missing data mechanism. We subsequently used a standard statistical model to analyse the two 

original complete samples in order to obtain a set of ‘true’ analysis results. Using different missing 

data methods, the same model was then run on each of the newly created incomplete samples. 

Finally, we compared the results obtained for each incomplete sample with those of the respective 

complete dataset. The following sections illustrate each of the five steps in more detail. 

Step 1: Selecting the complete samples 

We used data from the 2003 cohort of the Longitudinal Surveys of Australian Youth (LSAY) and the 

2009 National Vocational Education and Training Provider Collection (VET Collection) for our 

performance assessment. Including samples from two different social science datasets in our 

examination allowed us to cross-check performance test results across datasets with different variable 

compositions. Specifically, the LSAY sample contained more continuous variables, whereas the VET 

Collection sample contained more binary variables. 

LSAY 

LSAY is a nationally representative survey that tracks young people from the ages of 15 to 25 as they 

move from school into further study and work. We randomly selected a sample of 5000 cases with 

complete data on four predictors and one outcome variable to predict completion of the senior 

secondary certificate of education from a respondent’s sex, occupational aspirations, socioeconomic 

status, and mathematics achievement. We standardised all continuous variables to facilitate the 

comparability of results. Table 4 provides descriptive data for the complete LSAY sample. 
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Table 4 Descriptive data for the complete LSAY sample 

Variable Coding M SD 

Sex Male = 0; female = 1 .51 .500 

Occupational aspirationsa Continuous .00 1.001 

Socioeconomic statusb Continuous .00 1.002 

Mathematics achievementc Continuous .00 1.000 

SSCE completion statusd Yes = 0; No = 1 .15 .354 

Notes: a Occupational aspirations were measured using the International Socio-Economic Index of Occupational Status (ISEI, 
Ganzeboom et al. 1992). Higher scores indicate higher levels of expected occupational status. 

 b Socioeconomic status was measured using the Index of Economic, Social, and Cultural Status (ESCS), a composite 
measure of parental occupation, parental education, and home possessions. 

 c Mathematics achievement was measured using the first of five plausible values from the 2003 Program for International 
Student Achievement (PISA), which forms the base year of the 2003 LSAY cohort. 

 d The proportion of students who do not complete the senior secondary certificate of education is underestimated in LSAY 
because respondents who do not complete secondary education are more likely to drop out of the survey. LSAY weights 
only partially account for this attrition bias. 

VET Collection 

The VET Collection is a large administrative dataset that provides information on vocational training 

programs from government-funded and privately operated training providers. Its main purpose is to 

measure vocational course completion rates and other indicators of the vocational education and 

training system. We sampled all 3542 cases from a total of 4943 vocational bridging course4 participants 

who had complete data on five predictors and one outcome variable to predict completion of the 

bridging course from a respondent’s age, disability status, completion status of the senior secondary 

certificate of education, completion status of a vocational certificate III,5

Table 5 Frequency distributions for the complete VET Collection sample 

 and non-English speaking 

background. Table 5 provides frequency distributions for the complete VET Collection sample. 

Variable Values n % 

Age 16–67 N/A N/A 
    

Disabled 0 = No 
1 = Yes 

3471 
71 

98.0 
2.0 

    

Completed senior secondary 
certificate of education 

0 = No 
1 = Yes 

2841 
728 

79.4 
20.6 

    

Completed cert. III 0 = No 
1 = Yes 

2056 
1486 

58.0 
42.0 

    

Non-English speaking background 0 = No 
1 = Yes 

1882 
1660 

53.1 
46.9 

    

Dropped out of bridging course 0 = No 
1 = Yes 

3068 
474 

86.6 
13.4 

                                                   
4 Bridging courses include a broad range of introductory vocational courses, such as office administration, 

bookkeeping etc. 
5 A certificate III is a vocational education and training sector accreditation within the Australian Qualifications 

Framework. It allows individuals to perform a range of skilled operations in the trades or other occupations. 
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Step 2: Creating samples with different missing data mechanisms and 
levels of missingness 

We created a series of incomplete samples under different missing data mechanisms and levels of 

missingness by deleting values from the complete LSAY and VET Collection samples in a controlled 

manner. Specifically, we used straightforward probabilistic deletion to create incomplete samples 

under missing completely at random (MCAR), and a series of logistic regression models to create 

incomplete samples under missing at random (MAR).6

Imposing an MCAR mechanism 

 It is important to note that the sole purpose of 

these logistic models was to determine which values to delete from the complete samples. As such, 

they were entirely unrelated to the logistic regression models we used later on to analyse the samples. 

We recall that under missing completely at random the probability of a given value being missing on 

variable X does not depend on the values of any other variable in the dataset. Suppose we want to 

model the probability that the predictor mathematics achievement will be missing for some 

respondents in the LSAY sample. Since values for that predictor need to be deleted completely at 

random, we want the probability of deletion to be constant (that is, the same for every respondent). 

Suppose the probability that a respondent’s mathematics achievement score is missing is fixed at 7%. 

To apply the calculated probability to the data, we create a random variable, u, from a uniform [0,1] 

distribution (that is, a random number between 0 and 1). We then delete the mathematics 

achievement score if u is less than .07, which is equivalent to the score having a 7% probability of 

deletion. An illustration of this deletion process is provided in table 6. 

Table 6 Illustration of data deletion process for MCAR 

Respondent Pr(MATHS MISSING) u ~ [0,1] Delete MATHS if 
u ≤ Pr 

1 .07 .315 Keep 

2 .07 .724 Keep 

3 .07 .012 Delete 

Respondent 3 above would have their mathematics achievement score deleted because u is less than 

the given probability, whereas respondents 1 and 2 would retain their scores. On average, seven in 

every 100 respondents would have their scores deleted. Note that each respondent has an equal 

chance of having their mathematics achievement score deleted, meaning that the probability of 

deletion does not depend on any other variable in the dataset. 

Here, we chose an arbitrary value for the probability of mathematics achievement being missing. This 

value was then adjusted to give the desired overall percentage of missingness. Full details of the 

probabilities used for all of our missing completely at random mechanisms can be found in tables C5 

and C9 of appendix C. 

  

                                                   
6 A missing not at random mechanism was not included in our analysis because the complexities associated with non-

random missingness were beyond the scope of this paper. The interested reader is referred to a recent simulation 
study by Marshall et al. (2010) which found that under missing not at random all tested methods, including multiple 
imputation, performed poorly with 25% or more overall missingness. 
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Imposing a MAR mechanism 

Under missing at random the probability of a value being missing on variable X depends on the values 

of one or more observed covariates, but must not depend on the value of X itself. To illustrate, in a 

dataset with three predictors X1, X2, X3, and one outcome variable Y, the probability that X3 is missing 

for a given respondent can be related to that respondent’s values of X1, X2, and Y, but must not 

depend on the value of X3. The probability of deletion is no longer constant for every observation. 

Therefore, we need to use a logit model to impose the missing at random mechanism. The logit model 

consists of a constant term plus additional terms. 

To illustrate, suppose we would like the probability of X3 (a respondent’s mathematics achievement 

score) being missing to depend on: 

 Y (WHETHER OR NOT THE PERSON COMPLETED SCHOOL) 

 X1 (THE PERSON’S OCCUPATIONAL ASPIRATION SCORE) 

 X2 (THE PERSON’S SOCIOECONOMIC STATUS) 

and for this probability to increase if X1 is already missing. These rules can be modelled with the 

following logit function, 

logit[Pr(MATHS MISSING)] = α0 + α1Y + α2X1 + α3X2 + α4MX1, 

where α0, α1, α2, α3, and α4 are constants, and MX1 is a missingness indicator for predictor X1 which 

equals 1 if X1 is missing, and 0 if it is observed. The coefficients α0 through α4 were adjusted until we 

obtained the desired level of missingness. A parallel goal was to choose ‘sensible’ values for the logit 

coefficients to implement a realistic missing at random mechanism. A detailed example of how 

‘sensible’ values for the logit coefficients are chosen is provided in appendix C. Once the coefficients 

are set, the probabilities of deletion are found using the inverse logit function, and the remainder of 

the deletion process for missing at random is then identical to that of missing completely at random 

(see appendix C for details). 

Note on our implementation of MAR 
Strictly speaking, a missing at random mechanism is not allowed to depend on any unobserved 

variables. Since the subset of observed variables could be different for every respondent (for 

example, one respondent might only have values for sex, occupational aspirations, and mathematics 

achievement, while another might only have values for occupational aspirations and socioeconomic 

status), we would need to define a separate missing at random mechanism for each scenario. 

Many simulation studies circumvent this problem by having the missing at random mechanism depend 

only on variables that are fully observed for all respondents. Such an approach would not be 

appropriate for our purposes, as we only have one fully observed variable, Y, and a number of 

predictors on which we want to impose missingness. Although we could let the probability of each 

predictor being missing depend only on Y, this approach would be overly simplistic and unrealistic. 

We tackled this issue by implementing a ‘hybrid’ missing at random mechanism, whereby the 

missingness for a given variable X could not depend on that predictor itself, but could depend on all 

other variables, some of which may be unobserved for a particular respondent. While our 

implementation of missing at random somewhat deviates from the ‘text book’ definition, we argue 

that it better reflects the reality of missing value dependencies. As Graham (2007) argues, data are 

rarely strictly missing at random or strictly missing not at random, but somewhere on a continuum 

between the two. 
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Predictors with imposed missingness 

Following the above process for imposing different missing data mechanisms, we deleted four 

predictors in LSAY, including sex, occupational aspirations, socioeconomic status, and mathematics 

achievement. Likewise, we deleted three predictors in the VET Collection, including completion 

status of the senior secondary certificate of education, completion status of a vocational certificate 

III, and non-English speaking background. 

Setting levels of missingness 

For each missing data mechanism, we created three different levels of missingness, including a 

moderate level of 25%, a high level of 50%, and a ‘realistic’ level that reflected the actual missingness 

in the original collections. This actual level was 17% across the four incomplete predictors in LSAY and 

30% across the three incomplete predictors in the VET Collection. The resulting combinations of 

mechanisms and levels of missingness are outlined in table 7. 

Table 7 Combinations of missing data mechanisms and levels of missingness 

Mechanism Level of missingness (%) 

 LSAY VET Collection 
Missing completely at random 17 25 

 25 30 

 50 50 

Missing at random 17 25 

 25 30 

 50 50 

In table 7, a level of missingness of 25% means that ‘25% of respondents have at least one data value 

missing’. Note that it does not mean that 25% of values are deleted from each predictor. Since values 

are deleted from multiple predictors, predictors can have overlapping missingness (see figure 3), 

meaning that we only need to delete a small percentage of values from each column to arrive at 25% 

missing overall. 

Figure 3 Illustration of overlapping missing values across predictors 

Respondent X1 X2 X3 X4 

1     

2     

3     

4     

5     

6     

7     

8     

9     

10     

11     

12     

Note: Missing values are represented by a blank rectangle; complete values are represented by a coloured rectangle. 
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Let us consider figure 3, which illustrates a dataset with 12 records and four variables. Even though 

only 25% of values are missing from each column, 75% of records (9 out of 12) have missing data 

overall. Thus, to achieve a specified level of missingness (for example, 25%) we would delete values 

across all predictors such that 25% of the records have at least one predictor missing by adjusting the 

αi values for each predictor’s logit function. 

Following this example, we generated 1000 slightly different incomplete samples for each 

combination of missing data mechanism and level of missingness listed in table 7. This was done to 

ensure that our conclusions about the performance of missing data methods would be robust (that is, 

not vary greatly from one possible incomplete sample to the next). For each set of 1000 runs, 

variability was introduced by applying different seed values to generate the uniform random variable 

u that was used to control the deletion process. 

Verifying missing data mechanisms 

We conducted Little’s MCAR test to check our newly created incomplete samples. Results from the 

test for the LSAY and VET Collection samples are summarised in table 8.  

Table 8 Results from Little’s MCAR test for LSAY and VET Collection samples 

Mechanism  LSAY VET Collection 

 % Missing χ2 p χ2 p 
Missing completely at random 17 67.7 .180 N/A N/A 

 25 59.7 .558 27.5 .595 

 30 N/A N/A 29.8 .790 

 50 59.2 .879 29.1 .514 

Missing at random 17 605.8 <.001 N/A N/A 

 25 1165.8 <.001 1181.4 <.001 

 30 N/A N/A 1334.4 <.001 

 50 1995.6 <.001 1310.2 <.001 

We recall that Little’s MCAR test rejects the null hypothesis of completely random missingness if the 

missing values do not represent a true random sample of the observed data. Results from table 8 

confirm that the null hypothesis of complete random missingness is not rejected for our MCAR 

samples, but is rejected for our MAR samples. This confirms that the MCAR datasets we created had 

indeed completely random missingness, as opposed to our MAR datasets. 

Step 3: Analysing the complete samples 

We used logistic regression analysis as the standard statistical model for comparing the performance 

of select missing data methods. Our decision to choose logistic regression over alternative procedures 

(for example, linear regression, ANOVA etc.) was based on the fact that performance comparisons of 

missing data methods using linear models are readily available in the literature (see Olinsky, Chen & 

Harlow 2003; Schafer & Graham 2002). Given that studies in the social sciences often focus on binary 

outcomes (for example, completion of the senior secondary certificate of education, enrolment in 

tertiary education, completion of apprenticeships or vocational training modules, full-time 

employment status, receipt of welfare benefits), we selected binary logistic regression analysis for 

our performance test. 
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We recall that the overall objective of analysing the complete samples is to create a set of ‘true’ 

baseline results against which to compare results from the different incomplete samples. The specific 

baseline results we were interested in included regression coefficients and their associated standard 

errors. To generate these baseline results for the complete LSAY sample, we predicted the probability 

of completing the senior secondary certificate of education, given an individual’s sex, occupational 

aspirations, socioeconomic status, and mathematics achievement. We used the following logit model7

logit [Pr(COMPLETING SSCE)] = α0 + α1(SEX) + α2(OCC_ASP) + α3(SES) + α4(MATH) 

, 

where α0 is the intercept and α1 through α4 are the regression coefficients for each of the four 

predictors. Baseline results for the complete LSAY sample are provided in table 9. Note that all 

predictors are significant. 

Table 9 Logistic regression results for the complete LSAY sample 

 β SE Wald χ2 df p 

Intercept 1.981 .069 834.09 1 <.001 

Sex .520 .087 36.04 1 <.001 

Occupational aspirations .598 .044 185.46 1 <.001 

Socioeconomic status .179 .045 15.98 1 <.001 

Mathematics achievement .670 .047 204.71 1 <.001 

For the VET Collection sample, we used a similar logit model to predict the probability of dropping 

out of a vocational bridging course, given an individual’s disability status, age, completion of the 

senior secondary certificate of education, completion of a vocational certificate III, and non-English 

speaking background status, such that 

logit [Pr(DROPOUT)] = β0 + β1 (DISABLED) + β2 (AGE) + β3 (SSCE) + β4 (CERT III) + β5 (NESB) 

where β 0 is the intercept and β 1 through β 5 are the regression coefficients for each of the five 

predictors. Baseline results for the complete VET Collection sample are provided in table 10. Note 

that all predictors are significant. 

Table 10 Logistic regression results for the complete VET Collection sample 

 β SE Wald χ2 df p 

Intercept -.729 .187 15.16 1 <.001 

Age 1.500 .271 30.74 1 <.001 

Disabled -.028 .007 13.93 1 <.001 

Completed SSCE .618 .117 27.87 1 <.001 

Completed cert. III -.494 .114 18.72 1 <.001 

Non-English speaking 
background 

-1.360 .124 120.30 1 <.001 

 
  

                                                   
7 Note that the logistic regression models used to analyse the LSAY and VET Collection samples are for illustration 

purposes only. As such, they are intentionally kept very basic and should not be used to draw substantive conclusions. 
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Step 4: Analysing the incomplete samples with different missing 
data methods 

Using several different missing data methods, we fit the logistic regression models outlined in the 

previous step to each of the incomplete samples. The missing data methods we used include listwise 

deletion, constant replacement, and multiple imputation. We chose listwise deletion because it is 

among the most widely practised approaches to handling missing data in the social sciences. Listwise 

deletion is the default option in standard statistical software packages. Constant replacement was 

included because substituting missing data with the variable mean or mode is a simple option to 

address the issue. For the LSAY sample, constant replacement was implemented by using mean 

substitution for continuous predictors and mode substitution for binary predictors. For the VET 

Collection sample, only mode substitution was used, given that all predictors with missing values were 

binary. Finally, we included multiple imputation in our study because it is considered one of two ‘gold 

standard’ methods for addressing missing data. The inclusion of multiple imputation as a standard 

option in many general-purpose statistical software packages makes the method readily accessible for 

social scientists with various levels of statistical expertise. We implemented multiple imputation with 

ten and 100 imputed datasets to gauge potential performance gains from increasing the number of 

imputations. Multiple imputation was carried out in the software package SAS. (The code used to 

carry out multiple imputation in the LSAY and VET Collection samples is provided in appendix F: SAS 

code.) The second ‘gold standard’ method, direct maximum likelihood, was excluded because we only 

tested methods that can be easily implemented using standard statistical software.8

Step 5: Comparing results 

 

As a final step, we compared the logistic regression results for each of the complete samples with 

those from the incomplete samples for every combination of method, mechanism, and level of 

missingness. Specifically, we assessed regression coefficients and their associated standard errors for 

every predictor in the logistic regression model. Performance was assessed in terms of the deviation 

from the ‘true’ complete-sample results. 

 
  

                                                   
8 Direct maximum likelihood requires the use of specialised software or adaptations of standard software for use with 

logistic regression analysis. As such, the use of direct maximum likelihood may present a challenge for less 
experienced social science researchers. Messer and Natarajan (2008) carried out a simulation study using direct 
maximum-likelihood-based imputation for logistic regression. The authors found that direct maximum-likelihood and 
multiple imputation performed equally well under realistic missing data scenarios. 
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Results 
The following results illustrate the extent to which regression coefficients and associated standard 

errors deviated from those of the complete samples under each of the missing data methods. 

Regression coefficients for LSAY 

We computed the percentage deviation in regression coefficients from the complete sample by 

predictor for each combination of missing data mechanism and level of missingness. These estimates 

are stable because they represent mean results over 1000 simulation runs (that is, over 1000 randomly 

drawn samples, as was explained in the Setting levels of missingness section). Table 11 provides a 

summary of our results for regression coefficients. Deviations in regression coefficients in excess of 

25% are highlighted in bold. 

Table 11 Percentage deviation in regression coefficients from the complete LSAY sample 

Predictor Method MCAR MAR 

  17 25 50 17 25 50 
Sex Listwise deletion 0.03 0.36 0.08 -0.18 -3.08 -17.96 

Constant replacement -5.27 -7.44 -16.64 12.58 -84.57 -164.90 
Multiple imputation (10) 0.68 1.31 2.22 1.57 -2.20 -4.24 

Multiple imputation (100) 0.79 1.30 2.23 1.62 -2.21 -4.21 

        

Occ. asp. Listwise deletion -0.10 0.27 0.54 -0.82 -17.05 -52.38 
Constant replacement 0.54 0.82 1.59 -33.59 -9.74 -14.07 

Multiple imputation (10) 0.22 0.38 1.01 0.60 -0.10 -0.94 

Multiple imputation (100) 0.19 0.41 1.04 0.49 -0.02 -1.00 

        

SES Listwise deletion -0.27 -0.56 -0.68 -30.15 -74.13 -87.73 
Constant replacement 7.09 10.09 22.63 16.30 -33.61 -30.18 
Multiple imputation (10) 1.85 2.28 6.59 -1.76 -15.75 -4.99 

Multiple imputation (100) 1.78 2.42 6.54 -1.74 -15.09 -4.44 

        

Maths Listwise deletion 0.01 -0.01 0.03 -6.65 -4.51 4.44 

Constant replacement -1.58 -2.03 -3.94 11.86 -30.89 -20.42 

Multiple imputation (10) -0.33 -0.37 -1.07 -1.30 -11.23 -5.47 

Multiple imputation (100) -0.32 -0.41 -1.08 -1.29 -11.29 -5.42 

For samples where missingess was completely at random, we found the regression coefficients 

resulting from listwise deletion and multiple imputation to deviate only marginally from those produced 

by the complete sample. This outcome was unsurprising, since both methods are known to be efficient 

under MCAR. However, we also wish to remind the reader that listwise deletion leads to a loss of 

statistical power regardless of its good performance in relation to coefficient bias under MCAR. 

Our much more realistic MAR samples clearly demonstrate the relative performance advantage of 

multiple imputation over the two basic methods. Listwise deletion and constant replacement led to 

very large deviations across most predictors. In comparison, multiple imputation performed 

consistently well under MAR, even when 50% of cases had incomplete data. We note that there was no 

difference between creating ten versus 100 imputed datasets. We ascribe this to the large sample size 
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we used for simulation. For small samples, a larger number of imputed datasets would likely increase 

estimation accuracy (see Graham, Olchowski & Gilreath 2007). 

A graphical representation of results for individual variables provides further important insights. For 

example, figure 4 presents regression coefficient results for occupational aspirations. Graphs for the 

coefficients of all other predictors show a similar pattern and are provided in appendix D: Regression 

coefficients for LSAY and the VET Collection. 

Figure 4 Percentage deviation in regression coefficients from the complete LSAY sample for 
occupational  aspirat ions 

Note: LD = listwise deletion; CR = constant replacement; MI_10 = multiple imputation with 10 imputed datasets; 
MI_100 = multiple imputation with 100 imputed datasets. 

In addition to reflecting the deviation results outlined in table 10, figure 4 illustrates an additional 

dimension, namely the variability of estimation results over 1000 simulation runs. Clearly, the loss of 

statistical power from listwise deletion causes the largest spread in estimates for the predictor 

occupational aspirations. This means that when using a single sample (as opposed to the 1000 possible 

random samples that were drawn for this simulation study), the regression coefficient for 

occupational aspirations could be either highly overestimated or highly underestimated. 

Regression coefficients for the VET Collection 

In the VET Collection sample, all but one predictor were binary, and missingness was imposed on 

binary predictors only. Given the strong departure from the multivariate normal model the 

performance of multiple imputation was of particular interest to us. Table 12 provides the overall 

percentage deviation in regression coefficients over 1000 logistic regression runs for each combination 
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of missing data mechanism and level of missingness. Deviations in regression coefficients in excess of 

25% are highlighted in bold. 

Table 12 Percentage deviation in regression coefficients from the complete VET Collection sample 

Predictor Method MCAR MAR 

  25 30 50 25 30 50 
Age Listwise deletion -0.55 -0.45 -0.66 -37.75 -63.17 -72.55 

Constant replacement 6.27 7.99 14.48 48.70 59.95 48.07 
Multiple imputation (10) -0.26 -0.25 -0.25 -7.51 -22.90 -5.90 

Multiple imputation (100) -0.30 -0.28 -0.31 -7.39 -23.08 -5.46 

        

Disabled Listwise deletion 0.02 0.02 0.16 3.42 5.51 0.93 

Constant replacement 1.64 2.20 3.80 8.30 12.70 10.22 

Multiple imputation (10) 0.22 0.43 0.59 4.68 5.03 7.53 

Multiple imputation (100) 0.19 0.42 0.55 4.60 5.06 7.45 

        

SSCE Listwise deletion 0.62 -0.37 0.46 -110.81 -111.49 -104.23 
Constant replacement 3.04 2.94 4.88 -88.36 -143.19 -94.15 
Multiple imputation (10) 1.62 1.70 3.41 5.78 4.69 12.63 

Multiple imputation (100) 1.61 1.62 3.49 5.28 4.44 12.09 

        

Cert. III Listwise deletion -0.55 -0.17 -0.49 105.35 122.65 149.19 
Constant replacement 3.47 4.34 7.88 -100.46 -115.82 -93.18 
Multiple imputation (10) -0.07 0.38 0.54 23.72 32.29 14.01 

Multiple imputation (100) 0.01 0.60 0.74 23.55 32.52 13.60 

        

NESB Listwise deletion -0.08 -0.18 -0.41 -21.77 -77.50 -22.99 

Constant replacement 4.66 5.85 9.98 -18.76 -80.51 -31.63 

Multiple imputation (10) 0.91 1.26 2.08 3.56 -19.17 5.92 

Multiple imputation (100) 0.91 1.22 2.13 3.41 -19.51 6.00 

Results from the VET Collection samples show a very similar pattern to those from LSAY. Under MCAR, 

listwise deletion and multiple imputation performed well, whereas constant replacement somewhat 

overestimated the ‘true’ coefficients. Under MAR, multiple imputation vastly outperformed both basic 

methods by producing much smaller deviations on all but one predictor (disabled). The predictor non-

English speaking background also shows that multiple imputation can, in some instances, produce 

quite sizeable deviations from the ‘true’ coefficient (that is, deviations in excess of 30%). 

Nonetheless, in relative terms the multiple imputation coefficient estimates for that predictor were 

still much better than those produced by either listwise deletion or constant replacement. Finally, we 

again saw no benefit from specifying a high versus a low number of imputations. 

We use the predictor senior secondary certificate of education to illustrate the variability of 

estimation results over 1000 simulation runs in figure 5. Graphs for the coefficients of all other 

predictors show a similar pattern and are provided in appendix D: Regression coefficients for LSAY and 

the VET Collection. 
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Figure 5 Percentage deviation in regression coefficients from the complete VET Collection sample for 
senior secondary cert ifi cate of education 

Note: LD = listwise deletion; CR = constant replacement; MI_10 = multiple imputation with 10 imputed datasets; 
MI_100 = multiple imputation with 100 imputed datasets. 

As we can see from figure 5, the loss of statistical power inherent in listwise deletion has a strong 

detrimental effect on the variability of the estimated coefficients under MAR, even with moderate 

levels of missingness. The figure further highlights the positive performance of multiple imputation 

compared with both basic methods. Under MAR, the two basic methods greatly underestimate the 

impact of completing senior secondary education on dropping out of a vocational bridging course. 

Standard errors for LSAY 

As with regression coefficients, we computed the per cent deviation in standard errors over 1000 runs 

for each predictor. Results are summarised in table 13. 
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Table 13 Percentage deviation in standard errors from the complete LSAY sample 

Predictor Method MCAR MAR 

  17 25 50 17 25 50 
Sex Listwise deletion 10.23 15.48 40.30 22.10 42.69 109.06 

Constant replacement -0.93 -1.26 -1.96 -0.49 -3.31 3.95 

Multiple imputation (10) 2.91 4.28 10.83 1.59 12.64 34.75 

Multiple imputation (100) 2.67 3.97 10.05 1.48 11.84 32.47 

              

Occ. asp. Listwise deletion 10.12 15.37 40.26 23.15 44.89 129.22 

Constant replacement 0.49 0.82 2.73 0.02 -7.50 -4.25 

Multiple imputation (10) 2.35 3.50 8.48 18.69 10.90 20.66 

Multiple imputation (100) 2.17 3.28 8.00 17.27 9.98 19.82 

              

SES Listwise deletion 10.25 15.45 40.35 24.28 45.52 126.18 
Constant replacement 1.10 1.68 4.39 -1.68 -5.65 -2.14 

Multiple imputation (10) 2.31 3.46 8.54 1.82 15.55 31.98 

Multiple imputation (100) 2.12 3.22 7.65 1.60 14.47 30.01 

              

Maths Listwise deletion 10.15 15.42 39.97 21.61 39.65 108.61 

Constant replacement 0.46 0.75 1.74 -1.10 -6.35 -2.01 

Multiple imputation (10) 2.66 3.95 8.43 2.38 13.80 23.26 

Multiple imputation (100) 2.47 3.65 8.00 2.20 13.27 22.31 

As a basic missing data method, listwise deletion does not properly reflect the uncertainty inherent in 

having to estimate the missing data. We would thus expect underestimated standard errors similar to 

those produced by constant replacement. Instead, we see in table 13 that standard errors for listwise 

deletion are highly inflated. While this may seem paradoxical at first, we recall that listwise deletion 

effectively reduces sample size, which results in a loss of statistical power. The standard errors for 

listwise deletion have thus to be considered relative to their respective level of missingness and the 

number of records left after discarding incomplete cases. It is this reduction in statistical power that 

leads to drastically overestimated standard errors relative to those of the complete dataset. 

Similar to listwise deletion, constant replacement does not properly reflect the uncertainty inherent 

in the missing data. This uncertainty is an expression of our reduced confidence in the parameter 

estimates, given that we have to estimate the missing values. However, in contrast to listwise 

deletion, constant replacement does not result in standard error inflation relative to the complete 

sample due to reduced sample size. Instead, we observe in table 13 that constant replacement 

routinely underestimates standard errors when data are missing at random. Underestimated standard 

errors are problematic because they increase the Type I error risk (that is, rejecting the null 

hypothesis of no difference/relationship when in fact it is true). 

Multiple imputation reflects the uncertainty inherent in the missing data by taking into account the 

within-imputation and between-imputation variance through the pooling process, as was described in 

the section, ‘How multiple imputation works in SAS’. The pooling process results in a proper upward 

adjustment of standard errors. Figure 6 demonstrates this upward adjustment of standard errors for 

the predictor occupational aspirations. The adjustment is relative to the zero line, which represents 

the ‘true’ standard error for occupational aspirations based on the complete sample. Graphs for the 

standard errors of all other predictors in the LSAY samples show a similar pattern and are provided in 

appendix E: Multiple imputation standard errors for LSAY and the VET Collection. Note that standard 
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errors for the basic methods have been omitted from the figure, given that they are incorrect relative 

to those from the complete sample, based on theoretical grounds we have explained above. 

Figure 6 Percentage deviation in standard errors from the complete LSAY sample for occupational 
aspirat ions using multiple imputation 

Note: LD = listwise deletion; CR = constant replacement; MI_10 = multiple imputation with 10 imputed datasets; 
MI_100 = multiple imputation with 100 imputed datasets.  

What is particularly interesting in the context of multiple imputation is that the variability in standard 

errors over 1000 simulation runs is considerably higher for ten versus 100 imputed datasets when data 

are missing at random. Thus, although the benefit associated with creating and analysing higher 

numbers of imputed datasets is marginal for regression coefficients, doing so has a strong positive 

effect on the robustness of standard error estimates. 

Standard errors for the VET Collection 

Recall that the main purpose of including the VET Collection in this study is to examine how different 

missing data methods handle missingness in binary predictors. Standard errors for the VET Collection 

are summarised in table 14. 
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Table 14 Percentage deviation in standard errors from the complete VET Collection sample 

Predictor Method MCAR MAR 

  25 30 50 25 30 50 
Age Listwise deletion 14.97 20.25 44.25 67.72 92.52 135.54 

Constant replacement -1.44 -1.84 -3.17 -2.98 -2.69 -4.45 

Multiple imputation (10) 1.11 1.53 3.16 4.75 8.15 8.49 

Multiple imputation (100) 1.03 1.38 2.89 4.59 7.77 8.02 

              

Disabled Listwise deletion 15.16 20.39 46.43 51.48 65.15 727.85 

Constant replacement -1.18 -1.55 -2.74 -0.37 1.89 -0.91 

Multiple imputation (10) 0.34 0.43 1.07 1.24 5.47 2.80 

Multiple imputation (100) 0.31 0.37 0.92 1.15 5.24 2.55 

              

SSCE Listwise deletion 14.97 20.21 44.14 96.51 110.47 191.64 
Constant replacement 1.45 2.11 5.02 8.85 17.97 13.04 

Multiple imputation (10) 5.47 7.45 15.09 16.43 33.96 27.44 

Multiple imputation (100) 5.11 6.92 14.39 15.44 32.88 25.98 

              

Cert. III Listwise deletion 15.03 20.15 44.23 50.47 71.30 105.81 

Constant replacement 1.62 2.28 5.41 13.76 16.77 21.41 

Multiple imputation (10) 5.39 7.29 14.80 25.23 28.81 38.60 

Multiple imputation (100) 5.03 6.81 13.78 24.60 27.38 36.37 

              

NESB Listwise deletion 15.01 20.22 44.31 71.37 182.22 147.10 

Constant replacement 2.81 3.54 7.93 9.77 48.47 23.16 

Multiple imputation (10) 5.45 6.93 13.52 14.15 49.10 29.88 

Multiple imputation (100) 4.80 6.02 12.18 12.82 48.01 28.96 

Performance patterns for standard errors in the VET Collection were similar to those from LSAY for 

listwise deletion and constant replacement. A graphical representation of standard error results for 

the predictor senior secondary certificate of education is presented in figure 7. We note again that 

standard errors for the basic methods have been omitted from the figure, given that they are 

incorrect relative to those from the complete sample, based on theoretical grounds explained in 

conjunction with the LSAY sample above. Graphs for the standard errors of all other predictors in the 

VET Collection samples show a similar pattern and are provided in appendix E: Multiple imputation 

standard errors for LSAY and the VET Collection. 
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Figure 7 Percentage deviation in standard errors from the complete VET Collection sample for senior 
secondary cert ificate of education  using multiple imputation 

Note: LD = listwise deletion; CR = constant replacement; MI_10 = multiple imputation with 10 imputed datasets; 
MI_100 = multiple imputation with 100 imputed datasets. 
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Conclusion 
In this paper, we have (1) provided key concepts around the handling of missing data in an easily 

accessible manner and (2) compared the performance of select missing data methods in two large-

scale, mixed-variable social science datasets. 

Our key points are as follows: 

 Under realistic missing-data scenarios, listwise deletion and constant replacement perform poorly. 

In practical terms this means that both basic methods severely misjudge the impact of any single 

predictor variable on a given outcome of interest. 

 Listwise deletion leads to much higher standard errors due to the loss of statistical power from 

discarding incomplete information. Constant replacement, on the other hand, underestimates 

standard errors. In practical terms this means that the mis-estimation of standard errors inherent 

in basic missing data methods greatly increases the potential for either failing to detect 

potentially important relationships between predictor variables and outcomes of interest, or for 

claiming the detection of such relationships where they do not exist. This, in turn, can lead to 

drawing wrong conclusions from research. 

 Multiple imputation performs much better relative to the basic methods across all tested scenarios 

and samples. In practical terms this means that, even with high amounts of missing data, 

regression coefficients and standard errors remain stable and close to those of the complete-

sample benchmarks. 

 When using multiple imputation, increasing the number of imputed datasets results in more robust 

standard error estimates. In practical terms this means that using more imputations can increase 

the robustness of statistical analysis. 

While modern missing data methods such as multiple imputation are no panacea for addressing every 

possible missing data scenario, they can often help reduce the risk of generating research results that 

are ‘plain wrong’. We strongly encourage applied researchers to more carefully consider the potential 

impact of incomplete information and to use modern missing data methods whenever possible in their 

own analyses of large-scale social science collections. 
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Appendix A 
Practical guidelines for applied researchers 

In this appendix, we provide a few guidelines for applied social scientists who are faced with missing 

data problems. These guidelines are based on our practical experience with missing data in large-scale 

social science datasets. As such, the points we raise below are general in nature and by no means 

exhaustive. We differentiate between general guidelines and those specific to multiple imputation. 

General guidelines 

What should I know about my missing data? 
It is crucial to familiarise yourself with the concrete missing data issue you are facing. Familiarising 

means understanding the ‘why’, ‘how’, and ‘mechanism’ of missingness, as discussed in the ‘Behind 

the scenes’ section. The ‘why’ and the ‘how’ will provide you with an indication of whether you are 

dealing with unit non-response, item non-response, wave non-response, attrition, or a mixture 

thereof. Remember that the methods we have outlined are suitable for item non-response. Unit non-

response, wave non-response and attrition are better addressed through weighting (see Lim 2011 for 

weighting in LSAY; Piesse & Kalton 2009 for wave non-response weighting). 

To determine whether your missing data are completely at random (the odds are that they are not), 

you should run a formal MCAR test. We suggest using Little’s (1988) MCAR test because it is readily 

available in standard statistical software packages such as SPSS and SAS. The code to conduct the test 

in SAS is available online at <https://webapp4.asu.edu/directory/person/839490> (Enders 2011). 

Remember that if the test rejects the MCAR hypothesis, there is no statistical test to ascertain 

whether your data are MAR or MNAR. If you have no further information on what caused the 

missingess, then MAR is the assumption of choice because both direct maximum likelihood and 

multiple imputation yield correct parameter estimates and standard errors under MAR. If you have 

additional information that provides a strong case for MNAR, then you can consider the Bayesian 

modelling techniques that have recently been proposed (see Mason et al. 2010). However, we caution 

readers that implementing these techniques requires considerable technical expertise in missing data 

methodology. A more practical option for less experienced researchers can therefore be to proceed 

with MAR-based methods (that is, maximum likelihood or multiple imputation), and being explicit 

about the associated bias in parameter estimates and standard errors. 

Should I always use advanced missing data methods? 
We do not generally recommend the use of constant replacement due to the resulting variance 

attenuation in the data. However, we suggest that listwise deletion is a feasible option where the 

amount of missing data is small (up to 5%, see also Schafer 1997). For all other scenarios we strongly 

encourage the use of multiple imputation or direct maximum likelihood. 

Guidelines specific to multiple imputation 

Which software should I use? 
Given that the superiority of multiple imputation over basic missing data methods has been firmly 

established in the literature, multiple imputation functionality has become a standard option in all 

major statistical packages. Our practical experience is based on the use of multiple imputation in SAS 

https://webapp4.asu.edu/directory/person/839490�
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PROC MI and the Multiple Imputation by Chained Equations (MICE; Van Buuren & Groothuis-Oudshoorn 

2009) package for R. For a detailed simulation study of diverse multiple imputation options in SAS, R, 

and Stata we refer the reader to Yu, Burton and Rivero-Arias (2007). 

When comparing SAS PROC MI and R MICE, one potential shortcoming of the former is that it operates 

under a multivariate normal model, which means that no option is available to specify models for 

categorical or binary variables. However, ‘in large datasets, with hundreds of variables of varying 

types, this is rarely appropriate’ (Azur, Stuart & Frangakis 2011, p.41). The MICE package for R is 

more flexible because it allows the user to specify different imputation methods for different variable 

types (that is, predictive mean matching for continuous variables, multinomial logistic regression for 

categorical variables, and binary logistic regression for dichotomous variables). For this paper, we 

conducted some exploratory analyses comparing SAS and R for both our LSAY and VET Collection 

samples. Although results under R were closer to those obtained for the complete samples, 

differences between R and SAS were small. Overall, the Markov Chain Monte Carlo algorithm in SAS 

seems quite robust to departures from multivariate normality, producing good imputation results 

when variables are non-continuous. 

Which variables should I include in my imputation model? 
The ‘golden rule’ in specifying the imputation model is to include all predictor and outcome variables 

that are in the substantive analysis model. For instance, our substantive analysis model for the LSAY 

sample sought to predict completion of the senior secondary certificate of education from a 

respondent’s sex, occupational aspirations, socioeconomic status, and mathematics achievement. 

Therefore, we included all four predictors and the outcome variable from the substantive analysis in 

the imputation model. If the imputed data are used for more than one substantive analysis, then the 

imputation model should contain every variable included in any of the analysis models. 

Besides including all predictor and outcome variables of the substantive analysis model, more 

experienced researchers may also consider including additional variables that are not part of the 

substantive analysis model but which are predictors of the incomplete variables. This approach has 

been found to enhance the accuracy of the imputed data. The interested reader can find an in-depth 

treatise of specifying imputation models in White, Royston and Wood (2011). 

How many imputed datasets should I create? 
Between five and ten imputed datasets are generally considered sufficient for multiple imputation to 

perform well. When dealing with small samples or large amounts of missing data, up to 100 cycles 

have been suggested (see Graham, Olchowski & Gilreath 2007; Hershberger &Fisher 2003). Yet 

another study suggests a rule of thumb, whereby the number of imputations should be at least equal 

to the percentage of incomplete cases (White, Royston & Wood 2011). 

For regression coefficients, our study indicated only a marginal performance benefit of creating 100 

imputations over creating ten, even with 50% missingness. However, we ascertained a clear benefit of 

increasing the number of imputations with respect to the robustness of standard error estimates over 

1000 runs. Since with modern statistical software packages the cost of creating a large number of 

imputations is virtually zero, we recommend using more rather than fewer imputed datasets. 

Should I round the multiply imputed values? 
SAS PROC MI provides optional settings that will round imputed values for categorical and binary 

variables to the nearest integer rather than return fractional imputed values. Rounding can be 
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advantageous because we generally prefer imputed values to be plausible. For instance, if sex is 

coded 0 for males and 1 for females, the multiple imputation procedure should return a value of 

either 0 or 1 rather than a fractional value of 0.8. However, rounding in multiple imputation has been 

shown to produce bias with high levels of missing data (see Allison 2005; Horton et al. 2003). 

We ran multiple imputation with and without the rounding option and found that rounding had a 

detrimental effect on results. Without rounding, results were notably closer to the ‘true’ results from 

the complete samples. The negative impact of rounding was particularly strong with the VET 

Collection sample, suggesting that rounding becomes more problematic as the number of incomplete 

binary variables increases. Therefore, we suggest that researchers refrain from rounding categorical 

and binary variables unless there is a compelling reason for limiting imputations to plausible values. 

Is multiple imputation the perfect solution to missing data? 

Absolutely not! The perfect solution to missing data is to avoid them in the first place. Short of this, 

every estimate of unobserved values is imperfect. Consequently, we do not argue in favour of using 

modern methods (that is, multiple imputation or direct maximum likelihood estimation) because we 

think they are perfect remedies. We argue in their favour because they are far better than anything 

else out there. Thus, in terms of producing sound social science research, modern missing data 

methods help us do the best we can in an imperfect world. 
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Appendix B 
A worked example of multiple imputation 

Researchers who are unfamiliar with multiple imputation sometimes consider the method a ‘black 

box’ that relies on dubious voodoo magic to make up data. To dispel this myth, we provide a simple 

worked example of how multiple imputation works in SAS. Our worked example is adapted from 

Enders (2010). 

Suppose we have data on five respondents on a survey. Our data consists of respondents’ (1) 

occupational aspirations scores at age 15 measured on a scale from 1 to 100, and (2) annual incomes 

at age 30. Suppose further that some of the occupational aspirations scores are missing, as shown in 

table B1. 

Table B1 Example of dataset with partially missing occupational aspirations scores 

Respondent Occupational aspirations Income ($) 

1 . 65 000 

2 . 50 000 

3 17 40 000 

4 24 55 000 

5 98 75 000 

Note: ‘.’ indicates a missing value. 

To perform multiple imputation on this dataset using the data augmentation algorithm, SAS would 

perform an imputation step and a posterior step. 

The imputation step 

We first use the available data to determine a regression equation that predicts occupational 

aspirations scores based on income. In our example, only cases three to five would be used to 

generate the regression equation. Suppose we use the following regression equation for the ith 

respondent 

OCC_ASPi = -90 + 0.002 * INCOMEi. 

We then add an error term to the predicted values from the regression model. The new equation for 

the ith respondent is, 

OCC_ASPi = [-90 + 0.002 * INCOMEi] + zi, 

where zi is a normally distributed error term with a mean of zero and a variance equal to the variance 

of the residuals from the regression of occupational aspirations on income. Note that z is different for 

each person in the dataset. (A different error term is drawn for each person.) 

Suppose the variance   = 7.2. The z terms would thus be drawn from a normal 

distribution with a mean of 0 and a variance of 7.2. The higher the amount of missing data, the higher 

we expect the variance to be. 

We now impute the missing occupational aspirations scores for respondents 1 and 2 using the above 

regression model. The third column in table B2 lists the predicted occupational aspirations scores for 

respondents 1 and 2, the fourth column lists the random error terms (in this case z1 = 2 .6 and z2 = -



NCVER 43 

5.1), and the fifth column lists the imputed value, which is equal to the predicted value plus the 

random error term. 

Table B2 Imputation results from the first iteration 

Respondent Occupational 
aspirations 

Predicted  
value 

Random error 
term (zi) 

Imputed  
value 

Income  
($) 

1 . 40 2.6 42.6 65 000 

2 . 10 -5.1 4.9 50 000 

The imputed occupational aspirations scores are now passed on to the posterior step. 

The posterior step 

The first ‘filled-in’ dataset with imputed values from the previous step is illustrated in table B3. 

Table B3 Filled-in dataset with imputation results from the first iteration 

Respondent Occupational aspirations Income ($) 

1 42.6 65 000 

2 4.9 50 000 

3 17 40 000 

4 24 55 000 

5 98 75 000 

We now calculate the mean vector and covariance matrix of the first filled-in dataset. Suppose that 

 . 

We now randomly perturb these mean and variance estimates. This is done by adding a random error 

term to  and . Since the sampling distribution of the mean is a normal distribution with a standard 

deviation of , a new sample of five occupational aspiration scores should produce a mean that 

deviates from the current estimate by an average of  score points. We thus generate a 

random error term from a normal distribution with a mean of 0 and a standard deviation of 13.4 and 

add it to  A similar process is used to generate a new variance estimate, but a different residual 

distribution is needed. 

We now pass the perturbed mean and variance estimates back to the imputation step, which 

recalculates the regression equations using these new estimates of the means and variances. 

Repeating the imputation and posterior steps a large number of times creates multiple slightly 

different versions of the filled-in dataset. The question is: which version should we select as our first 

imputed dataset? This is where Markov Chain Monte Carlo theory comes in. 

Markov Chain Monte Carlo 

Suppose we want to take a random draw from a distribution of interest which has a complicated 

probability function. The idea behind using Markov Chain Monte Carlo for missing data is to take a 

‘random walk’ that eventually settles on the distribution of interest. In this case, the distribution of 

interest is the distribution of all possible sets of replacement values for the missing data. Alternating 

between the imputation and the posterior step generates a series of estimates and corresponding 

‘filled-in’ datasets: 

Y1*, θ1*, Y2*, θ2*, Y3*, θ3*,. . ., Yt*, θt*, 
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where Yt* represents the imputed values from the imputation step and θt* contains the parameter 

estimates from the posterior step. This is like our ‘random walk’, since the imputation and posterior 

steps incorporate elements of randomness. If we create a long enough chain, we will eventually settle 

on the ‘stationary distribution’ of the chain, which is what we want to sample from. 

We need to allow enough time for the Markov chain to ‘settle down’. This is called the ‘burn-in’ time. 

In SAS, the default number of burn-in iterations before each imputation is 200. After 200 iterations, 

we take the imputed values from the 201st iteration as our first imputed dataset. To ensure that the 

second imputed dataset is independent from the first, the chain is allowed to run for a further 100 

iterations. We thus take the imputed values from the 301st iteration as our second imputed dataset. 

SAS allows 100 iterations between each imputed dataset. 

A note on imputation with more than one incomplete variable 

When the dataset has more than one variable, the regression stage of the imputation step is slightly 

more complicated. Suppose we have three variables, X1, X2, X3, which all have some amount of 

missing data. This results in having six possible missing data scenarios, whereby we could have cases 

with missing data on (1) X1 only, (2) X2 only, (3) X3 only, (4) X1 and X2, (5) X1 and X3, or (6) X2 and X3. In 

the imputation step, we would need a unique regression equation for each scenario, as well as a 

different residual term for each error distribution that generates the zi terms. While this seems 

complex in theory, these steps are performed automatically by the statistical software package. 
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Appendix C 
Further details of the MCAR and MAR mechanisms 

Choosing ‘sensible’ logit coefficients for imposing MAR 

Here, we use our LSAY sample to illustrate how we chose ‘sensible’ coefficients for our 

implementation of the MAR mechanism. Remember that in our example we would like the probability 

of X3 (a respondent’s mathematics achievement score) being missing to depend on 

 Y (WHETHER OR NOT THE PERSON COMPLETED SCHOOL) 

 X1 (THE PERSON’S OCCUPATIONAL ASPIRATION SCORE) 

 X2 (THE PERSON’S SOCIOECONOMIC STATUS) 

and for this probability to increase if X1 is already missing. These rules can be modelled with the 

following logit function, 

logit[Pr(MATHS MISSING)] = α0 + α1Y + α2X1 + α3X3 + α4MX1, 

where α0, α1, α2, α3, and α4 are constants, and MX1 is a missingness indicator for predictor X1, which 

equals 1 if the value of X1 is missing, and 0 if it is observed. We will refer to the value of logit[Pr(MATHS 

MISSING)] as the ‘z-score’ for an observation. 

How did we choose values for α0, α1, α2, α3, and α4? The main goal governing our choice of logit 

coefficients was to achieve the desired overall level of missingness for each of our samples (that is, 

25%, 50% etc.), but our simultaneous goal was to ensure that the coefficients were sensible.  

We first provide some intuition as to what the coefficients mean. The intercept α0 can be interpreted 

as the ‘baseline probability’ for mathematics achievement being missing for an average person (that 

is, someone who has a score of 0 across all standardised predictors).  

In our context, an average person is someone who did complete the senior secondary certificate of 

education (Y = 0), who has an average occupational aspirations score (X1 = 0), and an average 

socioeconomic status score (X2 = 0). We thus set the probability of deletion for an average person to 
be fairly low. For example, if we let α0 = -1.38, then Pr(MATHS MISSING) = —  = .20 (using the inverse 

logit function). That is, an average person has a 20% probability of having their mathematics 

achievement score missing. This probability increases or decreases as we change the values of the 

other variables in the dataset.  

When the values of Y, X1 and X2 change, we want the probability of deletion to change accordingly. 

For example, if a respondent did not complete the senior secondary certificate of education (Y = 1), 

we want that respondent’s probability of deletion to increase. The z-score thus needs to increase, and 

the coefficient attached to Y (that is, α1) should be positive. Also, if MX1 = 1 (that is, if X1 is already 

missing for that respondent), we want the probability of deletion for X3 to increase further. 

Consequently, α4 needs to be positive. 

If a respondent has an above average occupational aspirations score, we want the probability of 

deletion to decrease; thus the coefficient attached to X1 should be negative. Similarly, if the 

respondent has an above average socioeconomic status score, we want the probability of deletion to 

decrease. The coefficient attached to X2 should then also be negative. 
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In general, if we want a positive value of a variable to increase the probability of a value being 

missing, we make the coefficient associated with that variable in the logit function positive. Likewise, 

if we want a positive value of a variable to decrease the probability of a value being missing, we make 

the coefficient associated with that variable negative.  

Once the coefficients of the logit functions are set, the remainder of the deletion process for MAR is 

very similar to that for MCAR. For each case, we first calculate its z-score using the logit function. We 

then find the corresponding probability of deletion using the inverse logit function. For example, if 
logit(Pr(MATHS MISSING)) = -0.37 (the z-score), then Pr(MATHS MISSING) = —  = .41. Next, we generate a 

uniform random variable, u, from the [0,1] distribution. The predictor value for a case is set to 

missing if u is less than the calculated probability. Notice that in contrast to MCAR, the deletion 

probabilities for MAR are not the same for every respondent (see table C1). 

Table C1 Illustration of data deletion process for MAR 

Person z-score Pr(MATHS MISSING) u ~ [0,1] Delete MATHS if 
u < Pr 

1 -.37 .41 .315 Delete 

2 2.19 .10 .224 Keep 

3 -2.42 .08 .146 Keep 

We repeat this process for each predictor that needs to be made missing, and adjust all of the 

coefficient values to achieve the desired overall level of missingness. The final coefficients used are 

given in the next section.  

Actual MAR and MCAR mechanisms used 

In this section we give (i) the actual coefficients for the logit functions used to impose our MAR 

mechanisms, and (ii) the deletion probabilities used for our MCAR mechanisms. We first specify these 

mechanisms for the LSAY dataset, followed by the VET dataset. 

LSAY dataset 
In the following tables, the variables X0 to X3, Y, MX1 and MX2 refer to the following: 

X0 = SEX, X1 = OCC. ASP, X2 = SES, X3 = MATH 

Y  = SSCE COMPLETION STATUS, 

MX1 = indicator variable which is 1 if X1 is missing, 0 if X1 is not missing 

MX3 = indicator variable which is 1 if X3 is missing, 0 if X3 is not missing 

The logit functions for the MAR mechanisms are given in tables C2, C3 and C4. Each logit function 

determines the probability of deletion of a particular variable. We present the logit functions in 

tabular form: reading across a row from left to right gives the full logit function for one variable. A 

shaded cell indicates that the variable is not allowed to be part of the function. For instance, in 

table C2, the probability that X0 is missing cannot depend on X0 itself, therefore X0’s coefficient is 

greyed out for X0’s logit function. 
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Table C2 Logit functions for MAR with 50% missingness 

Parameter Intcpt Y X0 X1 X2 X3 MX1 MX3 

Logit(Pr (X0) missing) = -1.8 +1(Y)  -0.8(X1) -0.5(X2)    

Logit(Pr (X1) missing) = -1.8 +0.5(Y)   -0.5(X2) -0.5(X3)   

Logit(Pr (X2) missing) = -2 +0.7(Y)  -0.6(X1)  -0.6(X3)  +1(MX3) 

Logit(Pr (X3) missing) = -1.9 +0.5(Y)   -0.6(X2)  +1(MX1)  

Read across a row of table C2 to obtain the full logit function for that variable, for example, 

logit[Pr(X2 MISSING)]  = -2 + 0.7(Y) + (-0.6)(X1) + (-0.6)(X3) + 1(MX3). 

Table C3 Logit functions for MAR with 25% missingness 

Parameter Intcpt Y X0 X1 X2 X3 MX1 MX3 

Logit(Pr (X0) missing) = -2.9 +1(Y)  -0.5(X1) -0.5(X2)    

Logit(Pr (X1) missing) = -2.9 +1(Y)   -0.4(X2) -0.5(X3)   

Logit(Pr (X2) missing) = -3 +1(Y)  -0.3(X1)  -0.3(X3)  +2(MX3) 

Logit(Pr (X3) missing) = -3 +1(Y)   -0.4(X2)  +2(MX1)  

Read across a row of table C3 to obtain the full logit function for that variable, for example, 

logit[Pr(X0 MISSING)]  = -2.9 + 1(Y) + (-0.5)(X1) + (-0.5)(X2). 

Table C4 Logit functions for MAR with 17% missingness 

Parameter Intcpt Y X0 X1 X2 X3 MX1 MX3 

Logit(Pr (X1) missing) = -2 +1(Y)   -0.4(X2) -0.4(X3)   

Logit(Pr (X2) missing) = -6 +1(Y)  -0.5(X1)  -0.5(X3) +1(MX1)  

Read across a row of table C4 to obtain the full logit function for that variable, for example, 

logit[Pr(X1 MISSING)]  = -2 + 1(Y) + (-0.4)(X2) + (-0.4)(X3). 

The deletion probabilities for the three MCAR mechanisms are given in table C5. Note that they are 

constant within each level of missingness; this is to ensure that the total missingness is evenly 

distributed across the variables. 

Table C5 Deletion probabilities for MCAR with 25%, 50% and 17% missingness 

25% Missingness 50% Missingness 17% Missingness 

Pr (X0 missing) = 0.07 Pr (X0 missing) = 0.15 Pr (X0 missing) = 0.05 

Pr (X1 missing) = 0.07 Pr (X1 missing) = 0.15 Pr (X1 missing) = 0.05 

Pr (X2 missing) = 0.07 Pr (X2 missing) = 0.15 Pr (X2 missing) = 0.05 

Pr (X3 missing) = 0.07 Pr (X3 missing) = 0.15 Pr (X3 missing) = 0.05 

VET Collection 
In the following tables, the variables X1 to X3, Y, MX1 and MX2 refer to the following: 

X1= SEX, X2 = CERT. III, X3 = NESB 

Y = DROPOUT 

MX1 = indicator variable which is 1 if X1 is missing, 0 if X1 is not missing 

MX2 = indicator variable which is 1 if X2 is missing, 0 if X2 is not missing 
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The logit functions for the MAR mechanisms are given in tables C6, C7 and C8. We present the logit 

functions in tabular form: reading across a row from left to right gives the full logit function for one 

variable. A shaded cell indicates that the variable is not allowed to be part of the function. For 

instance, in table C6, the probability that X1 is missing cannot depend on X1 itself, therefore X1’s 

coefficient is greyed out for X1’s logit function. 

Table C6 Logit functions for MAR with 50% missingness 

Parameter Intcpt Y X1 X2 X3 MX1 MX2 

Logit(Pr (X1) missing) = -1.5 +1.3(Y)  -2(X2) +1(X3)   

Logit(Pr (X2) missing) = -1.8 +1.2(Y) +1(X1)  +0.5(X3) +0.4(MX1)  

Logit(Pr (X3) missing) = -1.6 +1.5(Y) +1.7(X1) -1.5(X2)    

Read across a row of table C6 to obtain the full logit function for that variable, for example, 

logit[Pr(X2 MISSING)] = -1.8 + 1.2(Y) +1(X2) +  0.5(X3) + 0.4(MX1). 

Table C7 Logit functions for MAR with 25% missingness 

Parameter Intcpt Y X1 X2 X3 MX1 MX2 

Logit(Pr (X1) missing) = -2.7 +2(Y)  -2(X2) +0.8(X3)   

Logit(Pr (X2) missing) = -3 +1.8(Y) +1.2(X1)  +0.5(X3) +1(MX1)  

Logit(Pr (X3) missing) = -2.8 +1.5(Y) +2(X1) -1.5(X2)    

Read across a row of table C7 to obtain the full logit function for that variable, for example, 

logit[Pr(X2 MISSING)] = -3 + 1.8(Y) +1.2(X2) +  0.5(X3) + 1(MX1). 

Table C8 Logit functions for MAR with 30% missingness 

Parameter Intcpt Y X1 X2 X3 MX1 MX2 

Logit(Pr (X1) missing) = -2.32 +2.2(Y)  -1(X2) +1.5(X3) 0 0 

Logit(Pr (X2) missing) = -4.58 +2.2(Y) +2(X1)  +2(X3) +2(MX1) 0 

Logit(Pr (X3) missing) = -2.75 +2.1(Y) +1.2(X1) -1.2(X2)  0 +2(MX2) 

Read across a row of table C8 to obtain the full logit function for that variable, for example, 

logit[Pr(X2 MISSING)] = -4.58 + 2.2(Y) + 2(X1) +  2(X3) + 2(MX1). 

The deletion probabilities for the three MCAR mechanisms are given in table C9. Note that they are 

constant down each column; this is to ensure that the total missingness is evenly distributed across 

the variables. 

Table C9 Deletion probabilities for MCAR with 25%, 50%, and 30% missingness 

25% Missingness 50% Missingness 30% Missingness 

Pr (X0 missing) = 0.09 Pr (X0 missing) = 0.21 Pr (X0 missing) = 0.12 

Pr (X1 missing) = 0.09 Pr (X1 missing) = 0.21 Pr (X1 missing) = 0.12 

Pr (X2 missing) = 0.09 Pr (X2 missing) = 0.21 Pr (X2 missing) = 0.12 
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Percentage missingness per predictor 

A final criterion in setting the logit coefficients and deletion probabilities was that the missing values 

should be evenly distributed across the predictors, to avoid all missing values being concentrated in 

one variable. Tables C10 and C11 illustrate the level of missingness imposed on the predictors for the 

LSAY and VET Collection samples, respectively, as a result of applying the above logit functions and 

deletion probabilities.  

Table C10 Percentage missingness imposed on predictors in the LSAY sample 

Mechanism Sex Occ. asp SES Maths 

MAR with 25% missingness 8 8 10 10 

MAR with 50% missingness 22 19 21 20 

MAR with 17% missingness 0 16 1 0 

MCAR with 25% missingness 7 7 7 7 

MCAR with 50% missingness 15 15 15 15 

Table C11 Percentage missingness imposed on predictors in the VET Collection sample 

Mechanism SSCE Cert. III NESB 

MAR with 25% missingness 8 13 10 

MAR with 50% missingness 21 25 21 

MAR with 30% missingness 19.2 14.5 14.6 

MCAR with 25% missingness 9 9 9 

MCAR with 50% missingness 21 21 21 

Notice that the missingness levels across each row of tables C10 and C11 are approximately constant, 

apart from MAR 17 in table C10 and MAR 30 in table C11, which were designed to mimic the observed 

percent missingness in the true dataset. 
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Appendix D 
Regression coefficients for LSAY and the VET Collection 

Figure D1 Percentage deviation in regression coefficients for sex  (LSAY) 

Figure D2 Percentage deviation in regression coefficients for occupational aspirat ions  (LSAY) 
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Figure D3 Percentage deviation in regression coefficients for socioeconomic status  (LSAY) 

Figure D4 Percentage deviation in regression coefficients for mathematics achievement  (LSAY) 
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Figure D5 Percentage deviation in regression coefficients for age (VET Collection) 

Figure D6 Percentage deviation in regression coefficients for disabled (VET Collection) 
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Figure D7 Percentage deviation in regression coefficients for senior secondary cert ifi cate of 
education (VET Collection) 

Figure D8 Percentage deviation in regression coefficients for vocational cert ificate I I I   
(VET Collection) 
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Figure D9 Percentage deviation in regression coefficients for non-English speaking background   
(VET Collection) 
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Appendix E 
Multiple imputation standard errors for LSAY and the VET Collection 

Figure E1 Percentage deviation in standard errors for sex  (LSAY) 

Figure E2 Percentage deviation in standard errors for occupational aspirat ions (LSAY) 
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Figure E3 Percentage deviation in standard errors for socioeconomic status (LSAY) 

Figure E4 Percentage deviation in standard errors for mathematics achievement  (LSAY) 
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Figure E5 Percentage deviation in standard errors for age (VET Collection) 

Figure E6 Percentage deviation in standard errors for disabled (VET Collection) 
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Figure E7 Percentage deviation in standard errors for senior secondary cert ifi cate of education (VET 
Collection) 

Figure E8 Percentage deviation in standard errors for vocational cert ificate I I I  (VET Collection) 
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Figure E9 Percentage deviation in standard errors for non-English speaking background  
(VET Collection) 
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Appendix F 
SAS code 

Here we provide the basic SAS code for the different missing data methods included in our 

performance test. Interested readers should consult the SAS online documentation at 

<http://support.sas.com/documentation/92/index.html> for details on using SAS PROC MI and SAS 

PROC MIANALYZE. 

Listwise deletion 

SAS automatically applies listwise deletion when analysing a dataset with missing values. For 

example, if fitting a logistic regression model, any observation with one or more missing values will be 

automatically excluded from the analysis. We used the standard logistic regression routines in SAS to 

analyse our samples under listwise deletion. Below is an example for carrying out listwise deletion on 

an LSAY sample with 25% of data missing completely at random. Since listwise deletion is the default 

method, we actually just run the straight logistic regression analysis. However, since LSAY contains 

attrition weights we need to use PROC SURVEYLOGISTIC in SAS. The ‘ods’ output statement is used to 

save the parameter estimates in a file called “LD_all”. 

/* Save parameter estimates in a file called ‘LD_all’ */ 

ods output Surveylogistic.ParameterEstimates = LD_all; 

proc surveylogistic data=work.mcar25_lsay; 

 class sex (ref = '0')/ param=ref; 

 model dropout = sex occ_asp escs math_std; 

 weight weight; 

run; ods output close; 

Constant replacement 

Constant replacement includes mean and mode substitution. For each variable, any missing values 

were replaced with either the mean or mode of that variable, depending on whether the variable was 

continuous or binary. For example, the mode of the predictor sex in the LSAY sample is 0; any missing 

values in sex were thus replaced with a value of 0. Similarly, the mean of mathematics achievement 

is 0 because that predictor was standardised. Any missing maths scores were therefore replaced with 

a value of 0. Below is an example for performing constant replacement on an LSAY dataset with 25% 

of values missing completely at random. 

/* Create Constant Replacement dataset */ 

data matching.mcar25_lsay_CR_Dataset; 

   set work.mcar25_lsay; 

 if escs = . then 

  escs = 0; *0 is the mean of escs; 

 if occ_asp = . then 

  occ_asp = 0; *0 is the mean of occ_asp; 

 if math_std = . then 
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  math_std = 0; *0 is the mean of math_std; 

 if sex = . then 

    sex = 1; *1 is the "mode" of sex; run; 

Multiple imputation 

Multiple imputation was implemented using the PROC MI routine with both ten and 100 imputations. 

An example code is given below for the LSAY and VET Collection datasets, respectively. There are 

additional rounding and max/min options available in PROC MI, which forces the imputed values to 

fall within the range of the observed values. However, in our analysis we did not use these options. 

The arguments for and against rounding the imputed values are presented in appendix A: Practical 

guidelines for applied researchers. 

LSAY 
(has weights, uses PROC SURVEYLOGISTIC, which requires using the “parms=” option in PROC MI 

ANALYZE). 

*/ PROC MI will create the specified number of imputed datasets */; 

*/ In this case we have set the no. of imputations to 10 */; 

proc mi data = work.mcar25_lsay nimpute= 10 seed=12345 out=imputed; 

var sex occ_asp escs math_std dropout; 

run; 

*/ PROC SURVEYLOGISTIC will run separate logistic regressions on each of the imputed datasets, since 
we have used the “by _imputation_” option*/; 

ods output parameterestimates=outlogistic_mcar25_lsay; 

proc surveylogistic data=imputed; 

model dropout = sex occ_asp escs math_std; 

weight weight; 

by _imputation_; 

run; 

ods output close; 

*/ PROC MIANALYZE will pool results from the imputed datasets */; 

*/ Also, we write the parameter estimates generated by proc mianalyze to a file called "ParmEst" */; 

ods output mianalyze.parameterEstimates = ParmEst; 

proc mianalyze parms(classvar=classval)=outlogistic_mcar25_lsay; 

modeleffects intercept sex occ_asp escs math_std; 

run; 

ods output close; 
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VET COLLECTION 
(no weights, uses PROC LOGISTIC only. Thus we use the “data=” option in PROC MI ANALYZE) 

*/ PROC MI will create the specified number of imputed datasets */; 

proc mi data = work.mcar25_lsay noprint nimpute=10 seed=12345 out=imputed; 

var age disable no_yr12 cert_III_prior NESB dropout; 

run; 

*/ PROC LOGISTIC will run separate logistic regressions on each of the imputed datasets */; 

proc logistic data=imputed outest=outlogistic_mcar25_lsay; 

model dropout (event='1') = age disable no_yr12 cert_III_prior NESB / rsquare; 

by _imputation_; 

run; 

*/ PROC MIANALYSE will pool results from the imputed datasets */; 

*/ Also, we write the parameter estimates generated by proc mianalyze to a file called "ParmEst" */; 

ods output mianalyze.parameterEstimates = ParmEst; 

proc mianalyze data=outlogistic_mcar25_vet; 

modeleffects intercept age disable no_yr12 cert_III_prior NESB; 

run; 

ods output close; 
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