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Entity Matching
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Overview of a typical
data integration

project within GOV
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area I'm covering today




Privacy-preserving entity resolution

e Goal: match corresponding rows in two distinct databases

>

—

Name DOB

Klara Jovel 07/09/1942
Scott Redo 04/08/1923
Tori Mckone | 07/06/1921
Rusty Brod 25/07/2014

Name

Tori Mckone

DOB
07/06/1921

?/

Scotty Undo

24/01/1965

Scott Redo

04/08/1923

I

Clara Jovel

07/09/1942

e Constraint: can’t share Personally Identifiable Information (PII)
e Solution: fuzzy & private matching




Privacy-preserving entity resolution

Jane Doe a8bf342 00 672bef4 —— Kat Clark

Paul Doe —— f{72630b _g ‘ 14fbe54 —— Jim Clark

Jim Clark == 14fbe54 7 "E; a8bf242 Janet Doe

Kate Clark —— a72bef4 = . 7830530 —— ShanBo
>

Shan Bo — 7830530 —_— ﬁ b3894f3 —— Bob Doe
-

Reg Pal —— 4bf6021 L 80ac364 —— Joe Smith

s

o
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One way hash functions One way hash functions



How?

For every record we process the Pll into a
Cryptographic Longterm Key or (CLK)

Briefly, we hash the bi-grams for each PIl feature into a
bloom filter.

https://github.com/nlanalytics/clkhash/
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Cryptographic Longterm Key gl
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Figure 1: Example for the mapping of two names (SMITH, SMYTH) using bigrams and
two hash functions to two Bloom-Filters (A, B) with 30 bits each.




Private Record Linkage AL
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Company A

Shared Secret
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Personally
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Semi-trusted Third Party ) D

 Only hashed data is uploaded to the entity resolution service
* Hash security relies on a shared secret between parties

* |Implemented the service with a simple JSON + REST API

e All communication is secured with HTTPS

* Authentication tokens created for each job

* Result type and agreed schema is set at beginning
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Client side: Command Line Utili ) D

I nianalytics / clkhash ©Unwatch- 9 *Unstar 4 YFork o

CLK hash: hash pii for entity matching Edit
@ 200 commits 1713 branches > 9 releases 228 contributors e Apache 2.0

Sronch master~  New pull request Create newfile  Upload fles  Find file ([t Senl ot bl

* Creates new mapping jobs

ics/docs readme (ua Latest commit b14384c 4 minutes ago
travis.yml fixed d schema (#130) 7 day
LICENSE Release v0.8.0 of clkhash (#25) 5 months ago
. requirements txt Fix Clkhash on Pypy3 by bumping PyBlake2 versio 4 days ago
e Retrieves results -

setup.py Fix Clkhash or 3 by bumping PyBlake2 version 14 days ago

toxin: Update cryptagraphy package and pin test dependencies (# 4 days ago

[ README.md

CLK Hash

Python implementation of cryptographic longterm key hashing. Supparts Python versions 2.7+, 3.4+
This is as described by Rainer Schnell, Tobias Bachteler, and Jérg Reiher in A Movel Error-Tolerant Anonymous Linking Code
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In [7]:

16 |

I'clkutil hash --help
Usage: clkutil hash [OPTIONS] INPUT OUTPUT
Process data to create CLKs

Given a file containing csv data as INPUT, and optionally a json document
defining the expected schema, verify the schema, then hash the data to
create CLKs writing to OUTPUT.

Use "-" to output to stdout.

Options:
-k, --keys <TEXT TEXT>...
-s, --schema FILENAME
--help Show this message and exit.

%%time
# Hash the data using the secret keys that the linkage authority doesn't know

I'clkutil hash --keys smooth oreo alice.txt alice-hashed.json

Assuming default schema

Hashing data

CLK data written to alice-hashed.json

CPU times: user 53.3 ms, sys: 16.7 ms, total: 70 ms
wall time: 2.23 s
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Performance & Case Study
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Speed and Scale ) D

* 1.3B hash comparisons/s
 Handle uploads of 35M hashes
e 1M x 1M match takes around 5 hours

Running on four rd.4xlarge instances on AWS
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100K Match - Time taken with more workers

Computing similarity between CLKs is a very parallel problem. Our
iImplementation utilizes multiple workers to carry out comparisons
using a kubernetes cluster
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Confidential Computing I@I&

How can we learn insights from data from multiple sources

‘ and protect its value? ‘

Organisation 1 : Organisation 2
- N Joint S N
| = —
| Sensitive . “ Sensitive
e Analys
|
|
| Health; sensor; finance < S 7 Health; sensor; finance;
. government; location; government; location;
|
| ) etc.

\  Cloud/ data center Y. l-.-l-l- \ Cloud / data center /

etc
N __ - Insights N !
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N1 Analytics Gl

Goals

‘ " Release your data without losing control | ‘ Access data that is currently too sensitive |

Technologies

Homomorphic
encryption

- Fully, Somewhat, Partially
Secure Multiparty Compute

Learning from Aggregates

Capabilities

Secure aggregation of data Detection

Learn and deploy models ClusiEag ey J
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